
Climate Shocks, Cyclones, and Economic Growth:
Bridging the Micro-Macro Gap

Online Appendix

Laura Bakkensen
U. of Oregon (lbak@uoregon.edu)

Lint Barrage
ETH Zurich (lbarrage@ethz.ch)

May 2025

Contents

1 Empirical Analysis 2
1.1 Panel Regressions - Further Results . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Cross-Sectional Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical Derivations 5
2.1 Stationary Equilibrium Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Storm Risk Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Model Quantification 6
3.1 TFP - Further Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Varying Lag Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 Robustness: HP Filtering and Cyclone Energy . . . . . . . . . . . . . . . . 8

3.2 Physical and Human Capital Losses - Further Results . . . . . . . . . . . . . . . . 9

4 Cyclone Risk Quantification 9
4.1 Cyclone Intensity Monte Carlo Simulation Details . . . . . . . . . . . . . . . . . . 9
4.2 Cyclone Risk Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Country Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Quantitative Model 13
5.1 Further Model Assessment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Counterfactual Results: Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2.1 Matched Savings Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2.2 Alternative Climate Models . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3 Indirect Impacts: Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1



1 Empirical Analysis

1.1 Panel Regressions - Further Results

Table A0 presents summary statistics for each of our cyclone intensity measures (εj,t).

Table A0: Cyclone Intensity Measure Summary Statistics

Measure Mean Std. Dev. Median Min. Max.

#Landfallst 0.3267 1.2861 0.0000 0.0000 16.00

#Landfallst/sqkm 0.0000 0.0008 0.0000 0.0000 0.0714

Max. Wind Speedt (knots) 6.4468 20.2647 0.0000 0.0000 150.00

Max. Wind Speedt (knots)/sqkm 0.0012 0.0248 0.0000 0.0000 1.9728

Energy†/sqkm 0.0066 0.1628 0.0000 0.0000 11.3439
†Energy is sum of maximum wind speeds cubed divided by 1000.

Table A1 presents output growth panel specification (1) using cyclone energy as intensity metric.
Table A1: Panel Analysis: Cyclone Strikes and Growth - Energy/sqkm
Dependent Variable: Real GDP/Capita Growthj,t
Sample: Unfiltered Has Controls

(1) (2) (3) (4) (5) (6)

Energy/sqkmj,t -0.004 -0.208*** -0.583*** -0.074*** -0.241*** 0.189

(0.010) (0.059) (0.040) (0.010) (0.073) (0.493)

Creditj,t·(Energy/sqkmj,t) 0.002*** 0.002***

(0.001) (0.001)

ln (GDP p.c.)j,t−1·(Energy/sqkmj,t) 0.059*** -0.026

(0.004) (0.049)

Domestic Creditj,t -0.000 -0.000**

(0.000) (0.000)

ln (GDP p.c.)j,t−1 -0.103*** -0.219***

(0.013) (0.033)

Country F.E.s: Yes Yes Yes Yes Yes Yes

Year F.E.s: Yes Yes Yes Yes Yes Yes

Country-Trends: Yes Yes Yes Yes Yes Yes

S.E. Cluster Country Country Country Country Country Country

Observations 7,573 5,690 7,573 1,978 1,978 1,978

#Countries 182 171 182 116 116 116

Adj. R-Squared 0.110 0.102 0.167 0.178 0.201 0.278

Table presents regression of countries’real GDP per capita growth rate in year t on cyclone energy (sum of max. wind speeds

cubed/1000 and normalized by land area) in year t plus controls for lagged natural log of real GDP per capita in level and inter-
acted with energy (Cols. 3, 6) or domestic credit provided by financial sector (%GDP) in level and interacted with energy (Cols.

2, 5). All regressions include country fixed effects, year fixed effects, country-specific linear time trends, and a constant.

Standard errors are heteroskedasticity-robust and clustered at the country level. (*** p<0.01, ** p<0.05, * p<0.1).
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Table A2 compares key properties of countries included in the "unfiltered" sample versus the sam-
ple with rich macroeconomic control variables as considered in paper Table 1. The results indicate
that countries with standard control variables have, on average, significantly larger populations,
higher statistical capacity, and less volatile growth.

Table A2: Sample Comparison
Sample

"Unfiltered" "Has Controls" Diff. (SE)

Population Mean 31.1 49.1 -18.0

(3.40)***

Statistical Capacity Rating Mean 68.2 74.2 -6.0

(0.70)***

Real GDP p.c. Growth Mean 1.8% 2.2% -0.4%

(0.12)**

Var. 6.7% 4.2% f = 2.53***

Table compares means or variance for indicated variables across "Unfiltered" and "Has Controls"

samples of country-years. Means are compared with two-sided t-tests (with Welch approximation

for unequal variances). Variance compared with F-test. (*** p<0.01, ** p<0.05, * p<0.1).

1.2 Cross-Sectional Regressions

This section describes our implementation of a cross-sectional analysis of cyclone risk and economic
growth in the spirit of Skidmore and Toya (2002) within our harmonized global panel. Skidmore
and Toya (2002) regresses countries’average 1960-90 growth rates on disaster metrics such as the
average number of climatic events per year in a sample of 89 countries. One potential concern
about Skidmore and Toya’s (2002) analysis is that they use countries’reported disaster occurrences
in EMDAT to measure general disaster risk, which are subject to several inclusion criteria and thus
constitute a partly selected sample. We regress each country j′s average growth rate from 1970-
2015 (gj) on different meteorological cyclone risk measures (µε,j) and a host of control variables
(Xj), including the fraction of land area in the tropics, absolute latitude, the fraction of the
population living within 100 kilometers of navigable water, an institutional quality proxy, and
initial GDP per capita.1

gj = β0 + β1µε,j +Xj
′β + εj (1)

Table A3 presents the results. Column (1) confirms that a significant positive correlation between
economic growth and Skidmore and Toya’s main disaster risk measure, the natural logarithm of
disaster counts (per land area), survives in our extended global sample using modern meteorological

1 We calculate the fraction of a country’s population residing within 100 kilometers of navigable water (defined as
a coast, major river, or major lake) in ArcGIS using geospatial shoreline data from the U.S. National Oceanic
and Atmospheric Administration’s Global Self-consistent, Hierarchical, High-resolution Geography Database
(Wessel and Smith, 1996) and population data from the Gridded Population of the World v4 produced by
the Center for International Earth Science Information Network at Columbia University and as published
through the Socioeconomic Data and Applications Center. We calculate in ArcGIS the fraction of a country’s
land area in a tropical climate zone based on Köppen-Geiger climate classification maps provided by Rubel
and Kottek (2010). Institutional quality is proxied by the Transparency International Corruption Perceptions
Index (Transparency International, 2015).
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data, although this effect appears non-monotonic (Columns (2) and (4)). The positive association
between cyclone risk and growth is also attenuated through the inclusion of controls for savings and
human capital accumulation (Columns (3) and (5)),2 consistent with the possibility that higher
savings and human capital investment rates could be part of the underlying mechanism driving
the positive association between risk and growth. Of course it is important to note that these
results are ultimately only suggestive, however, as cross-sectional growth regressions likely suffer
from omitted variable bias. Indeed, our quantitative model does not project positive impacts of
cyclone risk on growth in any of the countries we consider.

Table A3: Cross-Sectional Cyclone Risk and Growth Association
Dependent Variable: Avg. Real GDP/Capita Growth g1970−2015,j
Cyclonesj Measure: ln(Landfallssqkm ) Landfalls/sqkm Max. Wind/sqkm

(1) (2) (3) (4) (5)
Cyclonesj 0.094*** 175.023** 130.221 7.446** 5.694

(0.032) (77.957) (93.629) (3.587) (3.562)

(Cyclonesj)
2 -6,118.021** -6,416.218 -12.089** -11.654*

(2,761.339) (4,035.976) (5.763) (6.299)

SavingsRatej 0.092*** 0.091***

(0.022) (0.022)

YearsSchoolingj 0.000 0.011

(0.064) (0.064)

Tropics (%Area) -0.008* -0.009* -0.007 -0.009* -0.007

(0.005) (0.005) (0.005) (0.005) (0.005)

Abs. Latitude -0.010 -0.016 -0.014 -0.017 -0.013

(0.013) (0.014) (0.014) (0.014) (0.014)

Water Proximity (%Area) 0.003 0.006 0.013*** 0.007 0.014***

(0.005) (0.005) (0.005) (0.005) (0.005)

Institutions (CPI2015) 0.025*** 0.030*** 0.015 0.030*** 0.014

(0.009) (0.010) (0.009) (0.010) (0.009)

Initial GDP/Cap.1970 -0.024*** -0.026*** -0.044*** -0.026*** -0.043***

(0.003) (0.003) (0.006) (0.003) (0.006)

Observations 130 130 112 130 112

Adj. R-Squared 0.294 0.265 0.388 0.259 0.395

Table presents OLS regression of countries’avg. real GDP per capita growth rate (1970-2015) on natural

log of avg. number of cyclone landfalls per year +(1/45) normalized by area (Col. 1), the avg. number

of landfalls per year normalized by area in levels and squared (Cols. 2, 3), or avg. max. sustained

wind speed per year normalized by area in levels and squared (Cols. 4, 5). All specifications control

for the share of land area in the tropics, absolute value of latitude, fraction of pop. within 100km of major river,

lake, or coast, the Transparency International Corruption Perceptions Index, 1970 GDP/capita in $1000s,

and a constant. Cols. (3) and (5) further control for avg. savings rates and avg. years of schooling. Standard

errors are heteroskedasticity-robust and presented in parentheses (*** p<0.01, ** p<0.05, * p<0.1).

2 Educational attainment estimates are from Barro and Lee (2012).
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2 Theoretical Derivations

2.1 Stationary Equilibrium Growth

This section derives the paper’s equations defining equilibrium growth (10), following the approach
in Krebs (2003a,b). Country subscripts j are omitted for legibility. First, note that the household’s
problem can be written in recursive form as:

V (w, k̃, ε) = maxu(c) + βE[V (w′, k̃′, ε′)] (2)

subject to:
w′ = w[1 + r(k̃, ε)]− c (3)

where r(.) is as defined in paper equation (6). Substituting (3) into (2) and taking the first-order
conditions for c and k̃′ yields:

u′c = βE[V ′w′ ] (4)

0 = βE[V ′
k̃′
]

Next, substituting in the decision rules c = g(w, k̃, ε) and k̃′ = f(w, k̃, ε) yields the Benveniste-
Scheinkman conditions:

V ′w = βE[V ′w′ [(1 + r(k̃, ε)]]

V ′
k̃
= βE[V ′w′w(1 + k̃)−2

{
[Rk(k̃, ε)− δk − ηk(ε)]− [Rh(k̃, ε)− δk − ηh(ε)]

}
]

Substituting based on (4) and iterating forward then yields the Euler equation and asset allocation
optimality condition, respectively:

u′c = βE[u′c′ [(1 + r(k̃′, ε′)]] (5)

0 = βE[u′c′
w′

(1 + k̃′)

{
[Rk(k̃′, ε′)− δk − ηk(ε′)]− [Rh(k̃′, ε′)− δh − ηh(ε′)]

}
] (6)

Next, invoking the assumed utility function u(c) = c1−γ

1−γ , the budget constraint (3), and the fact that

c′ = c̃[1 + r(k̃′, ε′)]w′ (where c̃ ≡ 1− s̃ denotes the consumption-out-of-wealth ratio), substitution
and rearranging in (5) yields the desired result that:

s̃ = 1− c̃ =
(
βE[(1 + r(k̃′, ε′))1−γ]

) 1
γ

(7)

The same substitutions allow us to factor out as pre-determined terms c̃ and w′ = (1+ r)w− c in
(6). Further noting that, in stationary equilibrium, k̃′ = k̃, we obtain the desired condition:

0 = βE[

{
[Rk(k̃′, ε′)− δk − (1− π)ηk(ε′)]− [Rh(k̃′, ε′)− δk − (1− π)ηh(ε′)]

}
(1 + r(k̃′, ε′))γ

] (8)
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Finally, the expression for average growth can be derived by again invoking w′ = [1+ r(k̃, ε)]w− c
and c′ = c̃[1 + r(k̃′, ε′)]w′. First, note that the definition of c̃ implies that:

c̃ =
c

[1 + r(k̃, ε)]w
(9)

→ 1− c̃ = [1 + r(k̃, ε)]w − c
[1 + r(k̃, ε)]w

Consequently, expected growth can readily be shown to equal paper equation (10), as desired:

E

[
c′

c

]
= E

[
c̃[1 + r(k̃′, ε′)]w′

c

]
= E

[
c̃[1 + r(k̃′, ε′)]{[1 + r(k̃, ε)]w − c}

c

]
= (1− c̃)(1 + E[r(k̃′, ε′)]) = (s̃)(1 + E[r(k̃′, ε′)]) (10)

2.2 Storm Risk Impacts

This section substantiates the claim that cyclone realizations have a negative effect on contempo-
raneous growth ( dgt

dεt
< 0) in our model. This claim follow from the equation for realized growth

in stationary equilibrium (19) with the definition of portfolio returns (15) substituted in:

gt =
ct
ct−1

= (s̃)[1 + ωk(k̃){Rk(k̃, εt)− δk − (1− π)ηk(εt)} (11)

+ (1− ωk(k̃)){Rh(k̃)− δh − (1− π)ηh(εt)}]

Differentiating (11) with respect to cyclone realizations yields:

dgt
dεt

(12)

= (s̃)(1− π)
[
ωk(k̃){

∂Rk(.)

∂εt
− ∂ηk(.)

∂εt
}+ (1− ωk(k̃)){

∂Rh(.)

∂εt
− ∂ηh(.)

∂εt
}
]
< 0

where the inequality follows from the definition of factor returns (14) and our assumptions about
the damage functions as increasing in cyclone intensity.

3 Model Quantification

3.1 TFP - Further Results

3.1.1 Varying Lag Lengths

Table A4 present TFP impacts across varying cyclone lag lengths, along with Akaike/Bayesian
Information Criteria (AIC/BIC). The results are generally similar across lag lengths, but cease to
be precisely estimated as more observations are excluded at higher lag lengths. The information
criteria also imply that lower lag lengths are preferred.
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3.1.2 Robustness: HP Filtering and Cyclone Energy

This section presents two robustness analyses for our cyclone strike impact estimates on TFP.
First, Table A5 Column 1 shows results for cyclone impacts on TFP based on HP-filtering of each
country’s TFP series as opposed to log-linear detrending in the benchmark. We use an annual
smoothing parameter λ = 6.25 and regress the natural logarithm of the cyclical components,
ln(T̃FP j,t) on year fixed-effects and cyclone measures εj,t (equal to either maximum wind speed
per square kilometer or energy per square kilometer), with robust errors εj,t clustered at the
country-level:

ln(T̃FP j,t) = δt +

L∑
l=0

βA1+lεj,t−l + εj,t

In line with the benchmark results, we find significant negative effects of cyclone strikes on (cyclical)
TFP (Column 1). Second, Table A5 also presents results analogous to main paper Table 1 but
using cyclone energy (maximum wind speeds cubed summed over the lifetime of a storm over a
given country) per square kilometer - rather than maximum wind speeds per square kilometer - as
cyclone intensity measure. While the point estimates continue to suggest negative TFP impacts
that last for several periods, these estimates are generally imprecise (perhaps due to the additional
weight given to outliers by the energy measure).

Table A5: HP-Filtering and Cyclone Energy
(1) (2)

Cyclone Measure:
Max Wind
sqkm

Energy
sqkm

εj,t -53.690*** -0.245*

(8.901) (0.127)

εj,t−1 -27.172*** -0.084

(8.592) (0.160)

εj,t−2 -15.875* -0.200

(8.720) (0.191)

εj,t−3 3.264 -0.091

(11.138) (0.167)

εj,t−4 -1.078 0.157

(7.041) (0.228)

Obs. 2,812 5,649

Clusters 144 144

Adj. R2 0.0651 0.625

Table presents regression of natural log of cyclical component of TFP (based on HP-filtering,

with λ = 6.25) on a constant, year fixed-effects, and cyclone intensity up to four lags,
measured either by max. wind speed/km2 (Col. 1) or cyclone energy (sum of maximum

wind speeds cubed/1000 km2 (Col. 2). Standard errors are heteroskedasticity-robust

and clustered at country level. *** p<0.01, ** p<0.05, * p<0.1.
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3.2 Physical and Human Capital Losses - Further Results

Table A6 presents a robustness check for the depreciation impact estimation in paper Table 3 but
using damage data from MunichRe instead of EMDAT (as aggregated to the country-year level
for tropical cyclones and made available by Neumayer, Plumber, and Barthel (2014)).

Table A6: Capital Losses Robustness: MunichRe (Neumayer et al., 2014) Damage Data
Dependent Variable: ln(PropertyDamagesj,t/Kj,t)

(1) (2) (3) (4)
ln(MaxWindj,t) 3.615*** 5.945*** 1.029 0.940

(0.468) (1.062) (0.752) (0.753)

ln(MaxWindj,t)· ln(GDP pc)j,t−1 -0.051 -0.060

(0.084) (0.084)

ln(MaxWindj,t)·(Pct. Below 5m)j,t 0.018***

(0.006)

ln(GDP pc)j,t−1 -0.740 -0.838

(0.825) (0.833)

Pct. Below 5mj,t 0.188***

(0.052)

Constant 23.568*** 59.320*** 1.778 0.884

(4.357) (12.199) (7.348) (7.402)

Country Fixed Effects? Yes U.S. Only No No

Observations 295 27 295 295

Adj. R-Squared 0.203 0.602 0.138 0.153

Table presents regression of natural log of fractions of capital stock destroyed (Cols. 1-4) on

natural log of MaxWindj,t (max. wind speed normalized by country area), lagged GDP per capita

levels and max. wind interactions (Cols. 3, 4), the percentage of population living below 5 meters

elevation in levels and max. wind interactions (Col. 4), and country fixed-effects (Col 1). Col. 2

restricts sample to U.S. storms only. Damages based on Neumayer et al. (2014) aggregates of MunichRe

data. Heteroskedasticity-robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1).

4 Cyclone Risk Quantification

4.1 Cyclone Intensity Monte Carlo Simulation Details

First, we use the Emanuel et al.’s (2008) cyclone frequency data to estimate the projected mean
number of storms making landfall in each country j under the future climate T2090. Next we
assume a Poisson distribution of cyclone counts (Emanuel, 2013) to randomly sample the number
of storms making landfall in each country j per year under the future climate (taking n = 5, 000
draws from the Poisson(#landfallsj|T2090) distribution for each country j). Third, for each draw
of a number of storms making landfall in country j, we then randomly sample (with replacement)
maximum wind speed from one of the 3,000 synthetic tracks per basin (5,000 tracks in the North
Atlantic Ocean) in the Emanuel data. This process thus generates random draws over annual
cyclone realizations, including years without storms. This process captures changes in expected
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future intensity driven both by changes in the number and characteristics of storms. Finally, we
then fit Weibull distributions for each country.
In order to validate our approach, Figure A1 compares the estimated Weibull model’s expected

annual maximum wind speeds for each country under the current climate against their empirically
observed mean maximum wind speeds in the data. The model appears to fit the data very well,
with a correlation coeffi cient of 0.9985.

Figure A1: Estimated Weibull Expected Wind Speeds vs. Data

4.2 Cyclone Risk Changes

Figures A2 and A3 showcase our model’s benchmark projected changes in cyclone risk for each
country, specifically by plotting each country’s current mean annual maximum wind speed per
square kilometer (x-axis) against each country’s expected end-of-century (2100) annual mean
maxmimum wind speed per square kilometer. Figure A2 shows results for the full sample of coun-
tries for which we quantify the model, whereas Figure A3 zooms in to better display predicted
changes for countries whose future expected risk is less than 0.003 knots per square kilometer.

Figure A2: Current Mean vs. Future Expected Max. Wind Speed per Area
Figure A3: Current Mean vs. Future Expected Max. Wind Speed per Area (Zoomed In)

4.3 Country Codes

Table A7 presents the country code-name matching pertinent to our graphs.
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Table A7: Country Codes

Code Country
AUS Australia
BGD Bangladesh
BHS The Bahamas
BLZ Belize
CAN Canada
CHN China
COL Colombia
COM Comoros
CPV Cabo Verde
DMA Dominica
DOM Dominican Rep.
FJI Fiji
GBR United Kingdom
GTM Guatemala
HND Honduras
HTI Haiti
IDN Indonesia
IND India
IRL Ireland
JAM Jamaica
JPN Japan
KHM Cambodia
KOR South Korea
LCA St. Lucia
LKA Sri Lanka
MDG Madagascar
MEX Mexico
MMR Myanmar
MOZ Mozambique
MYS Malaysia
NIC Nicaragua
NZL New Zealand
PAK Pakistan
PHL Philippines
PRT Portugal
RUS Russia
THA Thailand
TTO Trinidad and Tobago
USA United States
VCT St. Vincent and G.
VNM Vietnam
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5 Quantitative Model

5.1 Further Model Assessment Results

First, Figure A4 shows the correlation between the predicted contemporaneous output growth
impacts for a hypothetical Category 5 hurricane based on our structural model (y-axis) and the
empirical results in Table 1 Column 2 (for maximum wind speed per square kilometer). The results
are very similar to the ones using Table 1 Column 6 to quantify empirical impact predictions.

Figure A4: Structural Model vs. Emprical Predictions of Cyclone Strike Impacts

Second, we evaluate the dynamics of predicted cyclone impacts in each country over time in
order to verify that the predicted output losses are persistent. Figures A5 and A6 showcase two
examples of the predicted output dynamics with and without a cyclone strike in period 2 (after
year 2014 baseline conditions). As expected, output falls as a result of the storm. This decline in
output also lowers investment in the year of the storm, which, in turn, lowers output (relative to
the counterfactual) in the subsequent year and beyond. The magnitude of the relative output loss
is mitigated in the years after the storm as TFP losses are assumed (in the shown simulations) to
be short-lived. However, the impacts on output due to lower capital stocks are persistent.
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Figure A5: Cyclone Strike Impact Simulation - Belize

Figure A6: Cyclone Strike Impact Simulation - Haiti

5.2 Counterfactual Results: Robustness

5.2.1 Matched Savings Rates

We seek to compare our model’s predicted savings rates to the data by comparing the model’s
projected physical capital investment rates (xk/Yt) to gross fixed capital formation as a percentage
of GDP in the data (Penn World Tables) for the model base year of 2014. While the model’s
predictions are quantitatively reasonable, ranging from 20.2% to 26.9%, they do not correlate well
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with variation in gross fixed capital formation rates in the data. This is arguably not surprising
as our model, designed to capture marginal changes in investment rates due to variation in storm
risks, abstracts from other determinants of investment rate levels, such as age dependency ratios,
fiscal policy, pension systems, capital controls, etc. In order to assess the robustness of the results
to this issue, we implement an alternative version of the model which allows utility discount
factors βj to vary across countries and forces the calibration to match capital investment rates
from the data. More formally, the revised calibration selects the base year values for s̃0,t, k̃0,j,
initial TFP level A0,j and utility discount factor βj to jointly match (i) the base year output
growth rate in the data, (ii) the base year capital investment rate in the data (as the equilibrium
x∗k,j,t/Yj,t in the model), (iii) capital allocation optimality condition (paper equation 9), and (iv)
the Euler equation (paper equation 8) for each country. The central drawback of this approach
is that allowing flexibility in βj is not enough to match the investment rates observed in some
countries, which we consequently have to drop from the analysis. For example, matching China’s
high savings rate would require a β in excess of unity.
Table A8 below lists the βj values and gross capital formation rates that we match in this

alternative model version. Figures A7 and A8 showcase results for the welfare and growth impacts
of cyclone risk changes in this setting, respectively (analogous to main paper Figures 5 and 6).
While the estimated welfare impacts are broadly similar as in the benchmark, they do increase
for countries with higher utility discount factors than the benchmark calibration value of β =
0.975 (e.g., the Bahamas), and decrease for countries with lower utility discount factors than in
the benchmark (e.g., the United States). The estimated growth impacts are, however, virtually
identical, with a correlation of 0.98 across the the benchmark and ‘matched savings rates’version
of the model.

Figure A7: Welfare Impacts of Cyclone Risk in Model with Matched Savings Rates
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Figure A8: Growth Impacts of Cyclone Risk in Model with Matched Savings Rates
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Table A8: Matched Savings Rates Calibration

Country Gross Capital Beta
Formation (%GDP)

Australia 27 0.989
Belize 21 0.942
Cambodia 22 0.971
Canada 25 0.976
Colombia 26 0.999
Comoros 27 0.937
Fiji 19 0.926
Guatemala 14 0.877
Honduras 22 0.963
Ireland 22 0.969
Jamaica 22 0.954
Japan 24 0.964
Madagascar 15 0.889
Mexico 22 0.950
New Zealand 23 0.967
Pakistan 15 0.863
Philippines 21 0.964
Portugal 15 0.894
Russia 22 0.951
Thailand 24 0.971
The Bahamas 32 0.990
Trinidad and Tobago 13 0.864
United Kingdom 17 0.912
United States 20 0.943
Venezuela 25 0.922
Vietnam 27 0.993

5.2.2 Alternative Climate Models

The benchmark results are based on emissions scenarios processed through the GFDL general
circulation model (Manabe et al., 1991). Figure A9 showcases the robustness of the results to
three alternative climate models used by Emanuel (2008) and Emanuel et al. (2008). While the
GFDL model does predict future risk increases which can be both noticeably higher (e.g., the
United States) and lower (e.g., Fiji, Bangladesh) than other models, the results are mostly similar
across models within each country.
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Figure A9: Welfare Impacts of Cyclone Risk across Climate Models

5.3 Indirect Impacts: Mechanisms

Finally, this section highlights some of the mechanisms in our paper through which households
respond to cyclone risk. Figure A10 showcases that our benchmark model calibration implies that
countries’savings rates s̃j are increasing in cyclone risk (measured by expected maximum wind
speeds per square kilometer). Figure A11 shows that countries’propensity to invest in physical
over human capital is decreasing in cyclone risk.
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Figure A10: Cyclone Risk and Savings Rates

Figure A11: Cyclone Risk and Asset Allocations
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