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Abstract

This paper explores the fiscal impacts of climate change and their policy implications
for the United States. I develop and empirically quantify a climate-macroeconomic model
where climate change can affect (i) government consumption requirements (e.g., healthcare),
(ii) transfer payments (e.g., income support), (iii) tax revenues, and where (iv) adaptation
to sea level rise (e.g., sea walls) must be publicly financed. First, the paper presents a novel
bottom-up quantification of fiscal costs based on literature synthesis and an empirical analy-
sis of public healthcare costs associated with extreme temperatures and wildfires. Climate
change is projected to increase total government consumption (transfer) requirements by
around 1.2% (0.3%) by mid-century in a high emissions scenario, with healthcare account-
ing for the majority of cost increases. Second, I show theoretically that the social cost of
carbon must account for climate impacts on both government consumption and household
transfer payments if the marginal cost of public funds exceeds unity. Finally, the numerical
results indicate that fiscal considerations are of first order importance for climate policy
design. The elasticity of the social cost of carbon with respect to government consump-
tion (transfer) impacts per degree warming is estimated to be around 20 (10). Accounting
for fiscal considerations moreover increases the projected domestic U.S. welfare benefits of
climate policy by up to a factor of three.
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1 Introduction

Climate change is increasingly recognized as a fiscal risk for many governments (CBO, 2021a;

GAO, 2019; IMF, 2008). Public finances may be exposed to climate change in numerous ways,

including through existing program costs (e.g., disaster assistance, healthcare), the need for

publicly funded adaptation (e.g., coastal protective infrastructure), and revenue yields due to

climate change impacts on aggregate production. While neither standard integrated assessment

models used to estimate the social cost of carbon (e.g., DICE, Nordhaus, 1992, 2017; FUND,

Anthoff and Tol, 2014, etc.) nor recent empirical damage aggregates such as by Hsiang et al.

(2017) consider or distinguish fiscal costs as such, they may contribute differentially to the overall

costs of climate change. First, some fiscal costs amount to resource losses which are typically

not included in these frameworks. For example, climate health impact quantifications often

focus on mortality without accounting for changes in (public) healthcare costs (e.g., Anthoff and

Tol, 2014; Hsiang et al., 2017). Second, governments typically raise revenues with distortionary

taxes (e.g., payroll levies which make it more expensive for firms to hire workers). Raising or

diverting public funds from such taxes is socially costly. Third, fiscal constraints may result in

lower adaptation funding - and thus higher climate change vulnerability - than anticipated by

standard models. Consequently, consideration of fiscal impacts may alter both the social cost of

carbon and the welfare impacts of climate policy.

This paper explores the policy and welfare implications of climate change’s fiscal impacts.

First, I present a novel bottom-up quantification of climate change impacts on existing public pro-

gram costs by synthesizing prior estimates for different programs (e.g., hurricane-related public

spending, crop insurance subsidies, etc.), and by empirically analyzing potential climate change

impacts on public healthcare expenditures due to extreme heat, cold, and wildfire smoke events.

I use these estimates to construct a fiscal climate damage function. The current benchmark

results suggest that existing program cost changes will increase total U.S. (federal, state, and

local) government consumption requirements by approximately 1.1% and transfers by at least

0.3% by mid-century in a business-as-usual emissions scenario. Healthcare costs are the largest

contributor to these changes. Next, for publicly funded adaptation, I focus on sea level rise pro-

tection options as quantified by the U.S. Environmental Protection Agency’s Coastal Property

Model (Neumann et al., 2014a,b). Adding optimized adaptation expenditures increases the total

government consumption impacts to +1.2% by mid-century.

Second, in order to gauge the welfare implications of these impacts and in order to consider

the revenue effects of both climate change and climate policy, this paper develops a climate-

macroeconomic model which extends prior literature by allowing for fiscal impacts. I specifically

build on the dynamic general equilibrium climate-economy model with linear distortionary taxes
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and government spending of Barrage (2020a) and introduce several new channels which allow the

climate to affect (i) government consumption requirements, (ii) government transfers to house-

holds, and (iii) endogenous public adaptation expenditures. In addition, (iv) revenue impacts

arise endogenously due to both production impacts of climate change and capital depreciation

impacts of sea level rise. I use the model to analyze the implications of fiscal impacts both

theoretically and quantitatively for the U.S. economy.

Theoretically, I show that the social cost of carbon must account for fiscal costs. Government

consumption requirement increases ought to be internalized analogously to private output losses

(e.g., in agriculture). Perhaps surprisingly, if revenues are raised with distortionary taxes, the so-

cial cost of carbon must further account for the effects of climate change on government transfers

to households, and the associated changes in the set of equilibria that can be decentralized as

a competitive equilibrium. The theoretical setup also indicates that the welfare costs of raising

public revenues distort the optimal provision of adaptation to reduce the non-market impacts of

climate change (e.g., damages to national parks), but not adaptation to reduce production or cap-

ital impacts (e.g., protection of infrastructure). Intuitively, while it is costly to raise revenues to

fund these measures, they effectively ‘pay for themselves’by increasing aggregate productivity.1

Finally, the numerical results are as follows. In the near term, total public expenditures due

to climate change are projected to rise from an estimated undiscounted 10-year total of $220

billion in the 2020s to $350 in the 2030s and over $800 billion in the 2050s ($2012), with the ma-

jority coming from existing program cost increases. As these benchmark estimates are subject to

fundamental uncertainties, I quantify the social cost of carbon (SCC) under a range of fiscal cost

estimates. The results imply an elasticity of the SCC with respect to government consumption

requirement (transfer) impacts per degree warming of around 20 (10). That is, a one percent in-

crease in government consumption (transfers) per degree warming translates into a +20% (+10%)

increase in the U.S. SCC.2 The domestic welfare benefits of imposing U.S. carbon pricing are

found to be substantial and significantly larger once fiscal considerations are taken into account.

The benefits of domestic carbon pricing are projected to increase from around $328-508 billion

in a setting without distortionary taxation (in initial period lump-sum consumption equivalent

variation, $2012) to between $395-$1,771 billion in a setting with distortionary taxation. That

is, the fiscal setting may increase the welfare benefits of carbon pricing by up to a factor of three.

In sum, these results highlight the importance of fiscal considerations for climate policy design.

1 This result reflects the well-known property that optimal tax systems should maintain aggregate production
effi ciency under fairly general conditions (Diamond and Mirrlees, 1971). See also Judd (1999) on public
capital inputs to production under distortionary taxation.

2 The estimated increase in the benchmark optimal carbon price due to fiscal costs is quantitatively on par
with prior studies’findings of factors such as climate system tipping points (Lemoine and Traeger, 2014),
ambiguity aversion (Lemoine and Traeger, 2016), or model uncertainty (Rudik, 2019).
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Of course it must be stressed that these results are subject to critical caveats and limitations.

Climate change impact quantifications are generally subject to fundamental uncertainties. Here,

the fiscal cost estimates are moreover based on a first generation of studies of select programs,

subject to many simplifications. Our model’s representation of fiscal policy and the economy

are also highly stylized. With these caveats in mind, the results nonetheless show that fiscal

costs have the potential to be quantitatively important. That is, taking current literature and

our estimates as given, adding fiscal considerations to standard frameworks leads to a significant

increase in the estimated welfare effects of climate policy. At the very least, the results thus

suggest that fiscal costs warrant further empirical investigation and consideration in integrated

assessment models.

Our analysis further relates to the literature as follows. First, this study builds on rich

literatures on integrated assessment models (IAMs, e.g. DICE, Nordhaus, e.g., 1992, 2008, 2017;

PAGE, Hope, 2011; FUND, Anthoff and Tol, 2014; MERGE, Manne and Richels, 2005; etc.)

and macroeconomic climate-economy models (e.g., Golosov, Hassler, Krusell, and Tsyvinski,

2014; van der Ploeg and Withagen, 2014; Acemoglu, Aghion, Bursztyn, and Hemous, 2012;

etc.), both of which have generally abstracted from fiscal policy and distortionary taxes. A sub-

strand of this literature focuses specifically on endogenous adaptation investments in integrated

assessment models (e.g., Felgenhauer and Webster, 2013; Agrawala et al., 2010; Bosello, Carraro,

and De Cian, 2010; de Bruin, Dellink, and Tol, 2009; Tol, 2007; Hope, 2006.) These frameworks

have again generally abstracted from fiscal considerations. Fried (2019) builds and empirically

quantifies a detailed macroeconomic model of adaptation to storm events and climate change in

the United States, but also does not distinguish public and private investments.

Second, a large literature3 in environmental economics has demonstrated the importance of

pre-existing taxes for the design of pollution mitigation policies, such as carbon taxes or emissions

trading schemes (see, e.g., review by Bovenberg and Goulder, 2002). Numerous studies also use

sophisticated computable general equilibrium models of the U.S. economy and tax system in

order to quantify climate policy interactions with fiscal policy (e.g., Goulder, 1995; Bovenberg

and Goulder, 1996; Jorgenson and Wilcoxen, 1996; Babiker, Metcalf, and Reilley, 2003; Carbone,

Morgenstern, Williams, Burtraw, 2013; Jorgenson et al., 2013; Goulder, Hafstead, and Williams,

2014; Goulder and Hafstead, 2017; Fried et al., 2018; Goulder et al., 2019; etc.). While this

3 These include, inter alia: Sandmo (1975); Bovenberg and de Mooij (1994, 1997, 1998); Bovenberg and van
der Ploeg (1994); Ligthart and van der Ploeg (1994); Goulder (1995; 1996; 1998); Bovenberg and Goulder
(1996); Jorgenson and Wilcoxedn (1996); Parry, Williams, and Goulder (1999); Goulder, Parry, Williams,
and Burtraw (1999); Schwarz and Repetto (2000); Cremer, Gahvari, and Ladoux (2001; 2010); Williams
(2002); Babiker, Metcalf, and Reilley (2003); Bernard and Vielle (2003); Bento and Jacobsen (2007); West
and Williams (2007); Carbone and Smith (2008); Fullerton and Kim (2008); Parry and Williams (2010);
d’Autume, Schubert, and Withagen (2011); Kaplow (2013); Carbone, Morgenstern, Williams and Burtraw
(2013); Goulder, Hafstead, and Williams (2014); Barrage (2020a), etc.

4



paper’s representation of the economy is vastly simplified compared to these studies, it adds an

integrated assessment representation of climate change and its economic effects, including on

government expenditures. In contrast, CGE models commonly assume climate change affects

only household utility. This paper also shows how some core insights from this literature, such as

on the different treatment of production and non-market externalities, extend to optimal public

adaptation expenditures.4

Finally, this paper relates to a growing empirical literature that quantifies the economic

impacts of climatic risks. I build on the climate adaptive response estimation approach based on

Auffhammer (e.g., 2018) and the Climate Impacts Lab (e.g,. Carleton et al., 2020; Nath, 2020,

etc.). This approach uses historical plausibly exogenous variation in weather events of interest -

such as extreme heat events - to identify economic impacts, but accounts for adaptation to long-

run climatic conditions by allowing these effects to vary with the local climate. The literature has

used this approach to quantify climate change impacts on outcomes such as energy consumption

(Auffhammer, 2018), mortality rates (Carleton et al., 2020), and manufacturing productivity

(Nath, 2020). To the best of my knowledge, this paper’s findings of public healthcare costs

associated with changes in extreme temperature events add to this literature. More broadly, while

numerous studies investigate the impacts of temperatures on mortality in the United States (e.g.,

Barreca et al., 2016; Deschenes and Greenstone, 2011; etc.) less is know about their impacts on

(public) healthcare costs. Karlsson and Ziebarth (2018) document significant public healthcare

costs of extreme heat days in Germany. Local event case studies have also documented heat-

related healthcare costs in the United States (e.g., Limaey et al., 2019). This study also relates to

a growing literature on the healthcare costs of wildfires. Numerous studies link specific wildfire

events to both poor air quality and increased healthcare utilization (e.g., Ahman et al., 2012;

Gan et al., 2017). Most relevant for this paper are some recent national-level estimates. Miller,

Molitor, and Zou (2017) empirically document significant increases in Medicare utilization and

costs due to wildfire smoke plume exposure measured based on satellite data (see also Liu et

al., 2017; Fran et al., 2018). This paper also finds evidence of sigificant increases in total public

healthcare costs associated with wildfire and smoke events at an annual level. Finally, this paper

thus also builds on a recent quantitative studies on the fiscal impacts of severe weather events and

climate change (e.g., Deryugina, 2017; Moore et al., 2020, Jerch et al., 2020). In particular, by

incorporating prior empirical estimates into a macroeconomic climate-economy model, I highlight

their welfare and policy consequences in a general equilibrium framework.

The remainder of this paper proceeds as follows. Section 2 presents the quantification of

climate impacts on existing public program costs. Section 3 describes the model setup and the

theoretical results. Section 4 presents the calibration of the model, including for the two other

4 See Belfiori (2015) for an analysis of private adaptation in a similar setting.
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fiscal climate impact channels of publicly provided adaptation to sea level rise and macroeconomic

impacts that affect revenue collection. Section 5 showcases the numerical results, and Section 6

concludes.

2 Existing Program Costs

This section synthesizes quantitative evidence related to climate change impacts on the costs

of public programs in the United States. I first synthesize prior estimates and then empirically

evaluate potential climate impacts on public health expenditures via changes in the distribution

of extreme heat, cold, and wildfire smoke events.

2.1 Prior Estimates

Hurricane-related disaster spending: The Congressional Budget Offi ce (CBO) carefully quantified

potential future changes in hurricane damages and their fiscal costs in the United States as follows

(CBO, 2016). Central estimates imply an increase in expected annual direct hurricane damages

from 0.16 percent of GDP at present to 0.22 percent by 2075. Approximately 45 percent of this

increase is estimated to be due to climate change, based on state-level sea level rise scenarios

coupled with future hurricane patterns as simulated under a high emissions warming scenario

(the Representative Concentration Pathway (RCP) 8.5, Van Vuuren et al., 2011). The remainder

is due to projected increases in coastal development. CBO further estimates that, in recent years,

federal disaster spending in response to hurricanes has averaged around 62 percent of the direct

damage value, or 0.10 percent of GDP. These expenditures include disaster relief through FEMA

and the Department of Housing and Urban Development, as well as repair activities by the Army

Corps of Engineers, the Department of Transportation, and the Department of Defense, inter alia.

Assuming that the federal aid-damage ratio will remain at 62 percent in the future, CBO thus

projects a benchmark increase in federal spending from 0.10 to 0.13 percent of GDP by 2075. We

consider the climate-related 45% of this change (+0.0135 percent of GDP) as benchmark impact

at the associated global mean surface temperature warming.5

Hurricane-related health and transfer spending: Deryugina (2017) presents a detailed empir-

ical analysis of hurricane strike impacts on fiscal transfers in the United States. She shows that

non-disaster transfers, such as public medical payments and unemployment insurance, increase

significantly in response to storms, and that those transfers are generally of much higher value

than direct disaster aid. Using her data and code, I construct estimates of the average annual per

5 Mean predicted global temperature changes for RCP 8.5 are 2.0◦C for 2046-2065, and 3.7◦C for 2081-2100,
above a 1986-2005 baseline (IPCC, 2014). Interpolating linearly yields 2.85◦C by 2075.
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capita spending impact on a county struck by a hurricane in the ten years following the storm

for total medical and income support payments, respectively.6 Table 1 displays the resulting

estimates.

Table 1: Hurricane Impacts on Public Medical and Transfer Spending

Hurricane Public

Saffi r-Simpson Medical Transfers

Category:

Cat. 1 3.7% 1.2%

Cat. 2 3.6% 1.8%

Cat. 3+ 4.8% 6.76%

Table displays avg. annual county-level per capita percent change in public

medical and transfer expenditures across the estimated hurricane impact

coeffi cients for years 0-10 after hurricane strike based on the data and code

of Deryugina (2017). Data include federal, state, and local payments.

In order to translate these hurricane impact estimates into projected climate change damages, I

use predictions of changes in U.S. hurricane patterns from probability density functions estimated

by Bakkensen and Barrage (2019) based on synthetic hurricane tracks under current and future

climates from Emanuel et al. (2008), along with historical storm track data from the International

Best Track Archive for Climate Stewardship (Knapp et al., 2010). The predicted increases in

U.S. storm risk are substantial, implying, for example, an increase in the expected number of

Category 3+ storms making landfall from 0.45 per year in the current climate to 2.6 per year by

the end of the century under a high emissions warming scenario.7 I divide these aggregate risk

increases across space in the 21 hurricane-vulnerable states considered in Deryugina’s analysis

by assuming that future cyclone tracks will remain geographically distributed as historical ones,

and compute expected medical expenditure increases for each county in the data. The results

imply that a ceteris paribus increase in hurricane risk associated with 1◦C warming increases

total annual public medical expenditures in affected sample counties by $4.9 billion ($2016), and

income support transfers by $3.0 billion.

Crop-Insurance Subsidies: The U.S. government offers subsidized crop insurance through the

Federal Crop Insurance Program. The majority of premium costs - almost two-thirds - are paid

6 I specifically create outcome variables that are either (i) the log of the sum of Medicare and non-Medicare
public medical expenditures per capita, or (ii) the log of the sum of unemployment benefits, income mainte-
nance transfers (e.g., Supplemental Nutrition Assistance Program), and retirement and disability insurance
benefits, and re-run the "Wind Speed Regressions" "Event study" specification for these outcomes, which
yields impact estimates for the 10 years following the storm. Table 1 presents the average annual impact by
hurricane category.

7 Specifically for 2080-2100 under the IPCC’s A1B SRES emissions scenario.
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for by the government on average according to the Offi ce of Management and Budget (OMB,

2016). In a joint analysis with the U.S. Department of Agriculture (USDA), OMB (2016) projects

program costs to increase 40% by 2080 under RCP 8.5, and 23% by 2080 under RCP 4.5 Given

the relevant median projections for future global temperature change in each of those scenarios,

we infer that impacts are approximately linear at around a +14% increase in costs per degree

warming.8

Table 2: Crop Insurance Cost Increase by 2080

RCP 8.5 RCP 4.5 Source

Increase +40% +23% OMB (2016)

Global Temp. Change (by 2075) 2.85◦C 1.6◦C IPCC (2014)

Per 1◦C impact: +14.04% +14.38%

Regression Coeffi cient per 1◦C : +14.05%

Wildfire Suppression Costs: The OMB (2016) also presents results from a USDA Forest

Service (2015) analysis to projected climate change impacts on the wildfire suppression costs

incurred by both the Forest Service (FS) and the Department of Interior (DOI). Their central

estimates imply annual cost increases of +45% for DOI and 117% for FS by mid-century (2041-

2059), and further cost increases of +72% for DOI and +192% for FS by late-century (2081-2099)

under the RCP8.5 scenario. Table 2 summarizes these results and the implied cost increases per

degree of warming, which again appear close to linear.

Table 3: Wildfire Suppression Cost Increases

RCP 8.5 Source

2041-59 2081-99

Global Temp. Change 2.0◦C 3.7◦C IPCC (2014)

Forest Service +117% +192% OMB (2016), USDA FS (2015)

Per 1◦C impact: +58.5 +51.9

Regression coeffi cient per 1◦C +52.1%

DOI +45% +72% OMB (2016), USDA FS (2015)

Per 1◦C impact: +22.5% +19.5%

Regression Coeffi cient per 1◦C : +19.6%

8 One relevant question for the appropriate integration of these costs into an IAM is whether this program’s
benefits are already reflected in agricultural output loss projections included in climate-economy models. To
the extent that agricultural impact estimates are based on studies that use private return measures such as
land prices (e.g., Nordhaus, Mendelsohn, and Shaw, 1994), they should already reflect net-of-subsidy costs,
so that subsidies can be added to the model without modification to the private damage function. Of course
we note that this approach ignores potential moral hazard effects of crop insurance on incentives for climate
adaptation as documented by Annan and Schlenker (2015).
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Urban Drainage Infrastructure: Climate change is projected to alter the costs of maintaining

current levels of service in urban infrastructure drainage systems. The U.S. Environmental

Protection Agency (EPA, 2017) has produced estimates of these costs across 100 major cities in

the United States. Assuming that cities will want to remain prepared for 50-year storm events,

the estimated cost increases are presented in Table 3.

Table 4: Urban Drainage Infrastructure Costs

RCP 8.5 RCP 4.5 Source

2050 2090 2050 2090

Global Temp. Change 2.0◦C 3.7◦C 1.4◦C 1.8◦C IPCC (2014)

Annual Cost ($2015 bil) 4.3 5.6 3.7 4.1 EPA (2017)

Per 1◦C impact: 2.2 1.5 2.6 2.3

Regression coeffi cient per 1◦C +$1.83 bil./yr

Endangered Species Act (ESA): As climate change is predicted to significantly increase the

number of species at risk of extinction, it may also increase the number of species listed under

the ESA. Protected species incur significant government expenditures at both state and federal

levels, for activities ranging from enforcement to research, and at agencies ranging from the U.S.

Fish and Wildlife Service to the Army Corps of Engineers. Moore et al. (2020) combine a careful

empirical analysis of the determinants of species listings and expenditures with projections of

species extinction risk under warming to estimate the associated fiscal costs. Their benchmark

results imply that the present value of ESA-related expenditures will increase 12.5% due to 2◦C

of warming, and 47.5% due to 5◦C warming, implying an average per degree increase of +7.9%.

We apply this increase to base year total government ESA expenditures (FWS, 2017) to infer

annual spending impacts.

Air Quality-Related Healthcare: Garcia-Menendez et al. (2015) use coupled earth systems

and a global atmospheric chemistry model to study climate change impacts on concentrations

of fine particulate matter (PM2.5) and ground-level ozone across the United States. A changing

climate is projected to alter these pollutants’concentrations through mechanisms such as water

vapor and temperature effects on atmospheric chemistry and ventilation. OMB (2016) uses

results from the authors on several morbidity outcomes (e.g., respiratory hospital admissions)

to quantify associated changes in federal health care costs. Their central estimates are modest,

corresponding to an extra $1.2 billion per year in today’s terms in a ‘no policy’baseline (leading

to 6◦C global mean surface temperature change by end of century) compared to a mitigation
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scenario (limiting warming to 1.5◦C). Importantly and as noted by OMB, as these estimates do

not capture climate impacts through changes in wildfire frequencies. We consequently attempt

a separate quantification of these impacts below.

2.2 Public Healthcare, Extreme Temperatures, and Wildfires

The results from prior studies considered above suggest that healthcare costs may be one of the

biggest contributors to climate change’s fiscal impacts. This section thus empirically considers

two other potentially important impact channels: Changes in extreme temperature distributions

and wildfire events.

Data: First, I obtain information on total public medical benefit transfers from the Bu-

reau of Economic Analysis’(BEA) Regional Economic Accounts ("REA", following Deryugina,

2017). The medical benefits measure includes payments made through federal, state, and local

governments through intermediaries to beneficiaries for care provided under programs including

Medicare, Medicaid, Children’s Health Insurance Program, military medical insurance benefits,

and local general assistance medical programs. The REA data also provide information on

populations and incomes at the county-year level. The main specification focuses on the years

1996-2018. Next, historical weather data are from Schlenker (2020), who provides processed

daily temperature and precipitation data for the contiguous United States at the 2.5x2.5 mile

grid level. Following prior literature, I divide temperatures into cold, moderate, and extreme

heat bins (e.g., Barreca et al., 2016). The benchmark specification defines "hot" days as having

a daily maximum temperature above 35 Celsius (95 Farenheit), and "freezing" days as having

a daily minimum temperature below freezing (0 Celsius). Alternatively, I also consider a "hot"

("freezing") day as having an average temperature above 32 Celsius (below 0 Celsius). Grid-level

data are aggregated into county-level variables via spatial averages (across grid cells), and daily

data are aggregated into annual measures by calculating the total number of hot and freezing

days in each county-year. In line with the literature, I also add quadratic controls for precip-

itation (e.g., Carleton et al., 2020). Next, information on wildfires and smoke events are from

the National Oceanic and Atmospheric Administration’s (NOAA) Storm Events Database. The

main variable of interest is the number of days in each year during which a county experienced a

wildfire or dense smoke.9 The distribution of this variable is highly skewed; I thus focus on the

natural logarithm of fire and smoke days.10 Data from the National Interagency Fire Center on

the number of acres burned by state-year is used to identify the top quartile of states in terms of

9 The Storm Events Database maps events into counties or "zones". I translate zone events
into underlying counties based on the National Weather Service’s zone-county correlation file.
[https://www.weather.gov/gis/ZoneCounty]

10 I specifically consider ln(FireSmokeDays+0.00001). Using an inverse hyperbolic sine transformation instead also
yields a positive and significant coeffi cient on wildfire and smoke days .
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wildfire risk, measured by average acres burned per year relative to state land area. State land

areas are obtained from the U.S. Census Bureau. Finally, population age and race profiles by

county-year are obtained from the National Center for Health Statistics.

Analysis: The benchmark is a standard panel specification at the county-year level:

lnYj,t = +Σ[βm + γmDMEANm,j]×Dm,j,t (1)

+δj + δt + (θs · t) +Xj,t
′β + εj,t

Here, lnYj,t denotes the natural logarithm of public medical expenditures Y in county j in year

t. The δj are county fixed-effects, which absorb cross-sectional differences in public medical

expenditures across counties. Year fixed-effects δt capture aggregate (national) shocks to public

medical spending in a given year. State-specific trends (θs · t) further allow public medical

spending to follow different trends in different states. The Dm,j,t terms represent climatic events

m ∈ {"hot", "freezing", "fire/smoke"}. In line with recent literature in empirical climate impact
evaluation (e.g., Auffhammer, 2018; Carleton et al., 2020; Nath, 2021), I seek to account for

adaptation to environmental risks by allow the effects of each event Dm,j,t to depend on the

county’s average frequency of the event (e.g., average number of hot days per year), captured by

DMEANm,j. Alternatively, I also consider average temperature as measure of DMEANm,j, in

line with prior studies (e.g., Carleton et al., 2020). For wildfires, I alternatively also limit the

analysis to the most wildfire-vulnerable states as a more appropriate control group, following

Deryugina’s (2017) approach on hurricanes. Finally, the vector Xj,t represents other control

variables. In the benchmark specification, this includes second-order polynomial controls in

precipitation, the natural logarithm of counties’ populations, of the population 65 years and

older, and of real per capita income, controls for prior year to current population and per capita

income growth, and the fraction of non-hispanic whites in the county population. I also control

for the number of hurricane days in each county-year as they may be correlated with hot days

and to avoid double-counting their effects. For robustness, I also consider interactions between

precipitation and temperatures. Standard errors εj,t are heteroskedasticity-robust and clustered

at the county level. Finally, observations are weighted by county populations.

Results: Table 5 showcases the main results. The main take-away is that both extreme
heat days and wildfire/smoke events appear to significantly increase public medical spending in

a given county-year. The coeffi cient on freezing days is also positive, but imprecisely estimated in

all but one specification. Column (1) shows the benchmark specification defining hot days based

on daily maximum and minimum temperatures. Column (2) adds interaction terms between

temperatures and precipitation. In this specification, the impact of freezing days also appears
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positive and precisely estimated. Column (3) showcases the specification using temperature

averages to define hot and cold days. Not surprisingly, the marginal impact of a day with

very hot average temperatures is considerably higher than of a day with a very hot maximum

temperature. This specification also reveals a precisely estimated adaptation effect, that is, the

marginal impact of hot days is significantly smaller in areas with higher average temperatures.

Column (4) returns to the benchmark but adds interaction terms for average wildfire events,

which leaves the results unchanged. Finally, Column (5) shows results restricted to the top

quartile of wildfire states, our preferred specification to estimate fire and smoke impacts. All

specifications show a small but highly significant increase in medical spending associated with

wildfire and dense smoke events.

Table 5: Public Health Expenditure Impacts
Dep. Var.: ln(Public Medical Expenditures)

(1) (2) (3) (4) (5)

Hot Daysj,t 0.0003** 0.0002* 0.0047** 0.0002** 0.0003

(0.0001) (0.0001) (0.0020) (0.0001) (0.0002)

Hot Daysj,t × HotDaysj -0.0000 -0.0000 -0.0002** -0.0000 -0.0000

(0.0000) (0.0000) (0.0001) (0.0000) (0.0000)

Freezing Daysj,t 0.0002 0.0003** 0.0001 0.0002 0.0001

(0.0002) (0.0001) (0.0001) (0.0002) (0.0003)

Freezing Daysj,t × FreezingDaysj -0.0000 -0.0000 -0.0000** -0.0000 -0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

ln(FireSmokeDays)j,t 0.0007*** 0.0007*** 0.0006*** 0.0007*** 0.0008***

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

ln(FireSmokeDays)j,t -0.0000

× ln(FireSmokeDays)j (0.0000)

Obs. 61,080 61,080 61,080 61,080 13,380

Adj. R-Sq. 0.999 0.999 0.999 0.999 0.999

#Counties (Clusters) 3,054 3,054 3,054 3,054 659

"Hot" Measure Max>35 Max>35 Avg.>32 Max>35 Max>35

"Freezing" Measure Min<0 Min<0 Avg.<0 Min<0 Min<0

Climate Interaction Measure Hot, Cold Hot, Cold Temp. Hot, Cold Hot, Cold
Demo./Inc./Precip./Hurricane Controls: Yes Yes Yes Yes Yes

Precip. × Hot, Cold No Yes No No No

Top Wildfire States Only No No No No Yes

County F.E.s: Yes Yes Yes Yes Yes

Year F.E.s: Yes Yes Yes Yes Yes

State-Trends: Yes Yes Yes Yes Yes

Table shows results of linear regression of log of county-year public medical expenditures on indicated

controls. Standard errors are heteroskedasticity-robust and clustered at county level. Regressions

weighted by county populations. Col. (4) restricted to top quartile of wildfire states.
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Figure 1: Hot Day Public Medical Spending Impact (Average Temp.)

In order to facilitate the interpretation of the coeffi cients on the temperature variables, Figures

1 an 2 illustrates the estimated marginal public health expenditures impacts of an additional hot

day across the continental United States. Figure 1 uses the average temperature results of

Column (3). Taken at face value, the results suggest that the impacts of an additional very hot

day on annual public medical expenditures range from zero to 0.45%, depending on a county’s

baseline climate. In southern states which are well-adapted to hot weather, the predicted impact

is zero or small. In contrast, in northern regions which are less adapted to extreme heat, the

public medical spending impacts are predicted to be substantial. Figure 2 presents the same

figure but based on the maximum temperature definition of hot days from Column (1). To be

conservative, I include the estimated adaptation effect despite its imprecision. Broadly speaking,

the results tell a similar story, namely that extremely hot days are associated with higher public

medical expenditures in areas which are not already accustomed to heat events. Finally, an

analogous figure showing freezing day impacts are shown in the Appendix. While these effects of

freezing days are less precisely estimated, I consider their potential magnitude so as to account

for potential cost savings resulting from reductions in freezing days due to global warming.

Before proceeding, I compare the estimated coeffi cients on wildfire and smoke days to related

prior studies. Taken at face value, the results suggest that a 1% increase in the number of wildfire

or smoke days in a vulnerable county increases public medical expenditures by approximately

0.0007%. On the one hand, though not precisely comparable,11 we can consider this order of

magnitude vis-à-vis Fann et al.’s (2018) estimate that U.S. wildfires caused an additional 11,300

hospital admissions in 2008. Given that national hospital admissions resulting from emergency

11 Fann et al. (2018)’s estimates represent a total effect on hospital admissions at a national level, whereas our
estimates represent marginal effects on total expenditures.

13



Figure 2: Hot Day Public Medical Spending Impact (Max. Temp.)

department visits were 15 million in 2008, the implied percentage increase is 0.00075% and thus of

very similar magnitude. On the other hand, Miller et al. (2017) estimate that an additional wild-

fire smoke day increases same-day Medicare inpatient spending by 0.6% and outpatient spending

by 2.8% among fee-for-service beneficiaries. Using aggregate Medicare spending data from the

Centers for Medicare & Medicaid Services, I calculate the implied elasticity of overall Medicare

spending with respect to wildfire smoke days as 0.1255.12 The difference in magnitude may be

due to several factors. For example, this paper’s estimates focus on annual level aggregates,

whereas Miller et al. (2017) study high frequency outcomes at the daily level. In the realm

of temperature healthcare cost impacts, Karlsson and Ziebarth (2018) find that aggregation to

the annual level reduces estimated effects by 90 percent. Miller et al. (2017) use a spatially

detailed remotely sensed measure of smoke exposure, whereas this study’s smoke measures are

both coarser and likely noisier measures at the county level. Finally, Miller et al. (2017) focus on

specific Medicare expenditures, whereas our REA medical benefits variable aggregates various

federal and local programs.

Climate Change Impacts - Extreme Temperatures: In order to map the estimated
effects into climate change impact projections, one needs forecasts of how the distribution of

extreme temperatures may change under a warming climate. Rasmussen et al. (2016) construct

down-scaled estimates and probability density functions for temperature changes resulting from

different global warming scenarios for each county in the United States. For example, Figure

3 showcases the median projected change in the number of days with maximum temperatures

12 Over the relevant time horizon (2007-2013), the average Medicare expenditure shares of inpatient and out-
patient services were 34.5% and 11.9%, respectively, implying an overall cost increase of 0.54%. Given Miller
et al.’s (2017) estimate that the national average Medicare recipient is subject to 23.5 smoke days per year,
a 1% increase in smoke days increases Medicare spending by (.2325*0.54%) = 0.1255%.
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above 35C for each county based on downscaled CoupledModel Intercomparison Project (CMIP5;

Taylor et al. 2012) output under a high emissions scenario (RCP 8.5, van Vuuren et al., 2011) by

mid-century (2040-59). The projections indicate large potential increases in hot days, with up

to 89 additional hot days per year in some locations. By the end of the century (2080-99), the

corresponding figure is up to 146 additional hot days per year. Analogous results for projected

changes in the number of freezing days per year range from -29 days to +3 days per year with

minimum temperatures below zero by mid-century under RCP 8.5.

Figure 3: Changes in Hot Days by 2040-59 (Max. Temp)

The empirical results suggest that increases in the number of hot days may affect public

healthcare costs in two ways. On the one hand, health spending may increase due to a higher

number of hot days, ceteris paribus. On the other hand, however, as the climate warms, the

marginal effect of each hot day is likely to decline as a result of adaptation. In order to account

for the latter effect, I thus first compute revised marginal impact maps evaluated under future

climates. Appendix Figures A3 and A4 present two examples of such maps for mid- and late-

century under a high emissions scenario, respectively. Compared to Figure 1, these maps show a

significant reduction in the projected public healthcare cost associated with extreme heat events

in the future. At the same time, however, the projected increase in the number of heat events

is large in many areas, as shown in Figure 3. The projected total increase in public healthcare

costs is thus given by the combination of the two forces.

Figures 4 and 5 illustrate projected total impacts in mid- and late-century, respectively, under

a high emissions scenario. Several points stand out. First, the projected impacts of changes in

public healthcare costs due to extreme heat events are quantitatively significant, reaching as high

as a 0.5% increase in annual total public medical expenditures in many counties. Second, the

geographic distribution of these impacts is heterogeneous and likely to change over time. Some
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areas, such as Texas, already appear well-adapted to extreme heat, and are thus not projected

to suffer large impacts despite a large predicted increase in hot days. Initially, the most affected

areas are southern-central and mid-Atlantic states which are not yet as well adapted to extreme

heat (see Figures 1 and 2) but which are also projected to see largest increases in extremely hot

days (see Figure 3). As these areas adapt to increased heat events, however, their vulnerability is

predicted to decline, resulting in lower total warming impacts by late century, as shown in Figure

5. Conversely, northern areas are predicted to experience only modest impacts in the medium

run as the projected increase in hot days is initially modest, but later in the century these areas

are predicted to see substantial healthcare cost increases as warming increases.

Analogous results for the potential impacts of reductions in freezing days are displayed in

Appendix Figure A4, again with the caveat that freezing impacts were mostly imprecisely es-

timated. Taking the point estimates at face value, the results suggest that some counties may

experience cost savings of up to around 0.5% per year, especially in areas such as Virginia or

northern Texas which are not well adapted to cold weather and thus suffer disproportionately

from freezing days when they do occur. Much of the country, however, appears already well

adapted to cold weather and is thus projected to benefit very little from reductions in freezing

days.

Figure 4: Total Public Healthcare Cost Impact of Extreme Heat by Mid-Century

Damage Function - Extreme Heat: The last step is to convert these estimates into a fiscal
climate damage function. Such damage functions generally specify total costs as a function of

aggregate warming indicators such as mean global atmospheric surface temperature change (e.g.,

Nordhaus, 1992, 2017) and serve the purpose of endogenizing feedback effects between economic

activity, policy, and the climate. In order to link the above estimates to global temperature
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Figure 5: Total Public Healthcare Cost Impact of Extreme Heat by Late-Century

change, I estimated a reduced-form linear downscaling model for each county, linking its projected

changes in hot and cold days to mean global surface temperature change in a given scenario (see

Appendix for details). Over the range of temperatures considered, the linear mapping appears

to provide a good fit. The correlation between the linearily predicted change in counties’number

of hot days per year and the Rasmussen et al. (2016) projections is 0.983. Let λ̂j denote the

estimated down-scaling coeffi cient for county j, that is, the predicted increase in the number of

very hot days per year in county j per degree of increase in global temperatures. Combining

the down-scaled relationship with the estimated coeffi cients in (1), one can derive the predicted

change in total public medical expenditures as a second order polynomial in global temperature

change Tt (see Appendix for details):

%∆PublicMedicalCostsj,t = [β̂hotλ̂j + γ̂hotDMEANhot,jλ̂j] · Tt + [γ̂hotλ̂
2

i ] · T 2t (2)

Finally, I aggregate county-level estimates from (2) into national aggregates based on each

county’s share of total public medical expenditures in the model base year 2016.

Climate Change Impacts - Wildfires: Wildfire risk is projected to increase rather severely
in many parts of the United States (Vose et al., 2012). Table 6 summarizes key projections for

the most wildfire-vulnerable states. Some states are projected to experience average annual

burn area increases of over 200 percent per degree Celsius of global warming. As a conservative

benchmark, I restrict projected healthcare cost increases associated with these changes to these

top wildfire states. This approach likely understates true costs both because it ignores impacts

in other vulnerable states such as Colorado, and because wildfire smoke plumes can travel long

distances (Miller et all., 2017). Figure 6 showcases the projected total public healthcare cost
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increase due to increases in wildfire activity by mid-century in a high emissions scenario (RCP

8.5). Interestingly, the magnitudes are similar as for extreme heat, with impacts as high as a

0.5% increase in total public medical spending through the wildfire channel alone.

Table 6: Review of Wildfire Burning Change Estimates
Avg. %∆Wildfire Activity

State per 1◦C global warming Sources:

AZ 241 McKenzie et al. (2004), Littell et al. (2009), Liu et al. (2009)
NM 237 McKenzie et al. (2004), Littell et al. (2009), Liu et al. (2009)
UT 240 McKenzie et al. (2004), Littell et al. (2009), Liu et al. (2009)
NV 98 McKenzie et al. (2004), Littell et al. (2009), Liu et al. (2009)
CA 82 Lenihan et al. (2003), McKenzie et al. (2004), Littell et al. (2009)
ID 84.7 Littell et al. (2010), Liu et al. (2010)
OR 72.1 Rogers et al. (2011), Littell et al. (2010), Liu et al. (2010)
WA 72.1 Rogers et al. (2011), Littell et al. (2010), Liu et al. (2010)
TX 14.0 Liu et al. (2010) (SW region estimate)
OK 14.0 Liu et al. (2010) (SW region estimate)
FL 28.2 Liu et al. (2010) (SE region estimate)
AK 43.3 Liu et al. (2010) (US overall estimate)
Table presents average of projections of percentage changes in acres burned per year or, for Liu et al. (2010),

annual wildfire potential as measured by the Keetch-Byram Drought Index, normalized across future climate

scenarios to a change per 1◦C global warming. We infer linearity in temperature based on Liu et al. (2010).

%ΔCosts/yr
(.477,.482]
(.183,.477]
(.154,.183]
[.144,.154]
No data

Public Healthcare Cost Impact Estimates: Wildfires and Smoke (2.5C, 2050­60)

Figure 6: Total Public Healthcare Cost Impact of Wildfires and Smoke by Mid-Century

2.3 Overall Existing Program Cost Impacts

We combine the quantitative estimates described in this section utilizing data on base year

(2016) program expenditures and overall (federal plus local) U.S. government consumption from
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the National Income and Product Accounts of the BEA. Table 9 summarizes the estimates, which

imply an increase in total U.S. government consumption requirements of +1.06% due to 2.5C

warming, which is predicted to occur by mid-century (around 2050) in a high emissions scenario

(e.g., RCP 8.5 in the MAGICC6 model, Meinhausen et al., 2011). Health expenditures account

for the majority (around 60%) of these costs. Incorporating the point estimates of projected

health cost savings due to decreases in freezing days (despite their lack of statistical precision)

would reduce this estimate only slightly to 1.02%. Government transfer payments are projected

to increase by around 0.3%.

Table 7: Existing Program Costs Summary

%∆ for 2.5C

Government Consumption Program Aggregate

Hurricane direct response* +13% +0.10%

Crop-insurance subsidies +35% +0.10%

Fed. Wildfire suppression +130% +0.11%

Urban drainage infrastructure +0.08%

Endangered Species Act +20% +0.01%

Fed. healthcare - Air quality +0.03%

Healthcare - Hurricanes +1% +0.48%

Healthcare - Extreme heat +0.25% +0.12%

[Healthcare - Freezing -0.10% -0.045%]

Healthcare - Wildfires +0.03%

Total Consumption +1.06%

Government Transfers

Income support - Hurricanes +0.28%

*Includes FEMA aid, HUD, Army Corps of Engineers, DOD, DOT

These estimates almost surely understate climate change impacts for numerous reasons. First,

we only consider a subset of public programs and climate impact channels for which some quan-

tification was possible. Second, even for those programs, estimates may be lower bounds. For

example, for fire suppression, only federal expenditures are included; for urban infrastructure,

only 100 cities are included, etc. Third, these estimates implicitly assume that the share of public

healthcare in government expenditures will remain constant going forward. In reality, however,

projections by the Congressional Budget Offi ce suggest that the share of Medicare will increase

significantly, potentially doubling by 2050 (CBO, 2021b). To the extent that climate change

will increase healthcare utilization, its impacts on mandatory program expenditures may thus be

larger than suggested by Table 7. On the other hand, the above estimates also do not account for
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some potential budgetary cost reductions, such as decreased participation in Social Security and

similar programs through premature mortality (CBO, 2021a). I nonetheless use the estimates of

Table 7 as a benchmark based on available evidence to gauge the plausible order of magnitude

of climate change’s fiscal costs via existing program expenditures. The quantification of other

fiscal impact channels is described in Section 4 below.

3 Model

This section presents the model. I build on the COMET (Climate Optimization Model of the

Economy and Taxation) model of Barrage (2020a), which, in turn, builds on the climate-economy

models of Golosov, Hassler, Krusell, and Tsyvinski (2014) and Nordhaus (2008; 2011) by incorpo-

rating a classic dynamic optimal Ramsey taxation framework (see, e.g., Chari and Kehoe, 1999)

to incorporate distortionary taxation and government revenue requirements. I now extend this

framework in four main ways. First, I introduce climate change impacts on the costs of providing

government services (e.g., healthcare) and on requisite government transfers to households (e.g.,

income support), motivated by the findings of Section 2. Second, I introduce endogenous public

adaptation expenditures. While the quantitative model focuses on sea level rise adaptation, the

theoretical setup also considers public spending to mitigate general climate impacts on produc-

tion and on household utility. Third, I introduce a sea level rise module, both in terms of the

climate dynamics of sea level rise and in making explicit the resulting capital losses. That is,

while standard models commonly summarize all climate change impacts as loss in aggregate out-

put, I separate out capital losses from sea level rise so as to more accurately account for impacts

on different tax bases. Finally, while the benchmark COMET is a global model, here I present

a model specific to the United States (US-COMET). For a stylized alternative quantification of

the model to the global level, see Barrage (2020b).

To briefly preview the model: an infinitely-lived, representative household has preferences over

consumption, leisure, and the environment. There are two production sectors. An aggregate final

consumption-investment good is produced from capital, labor, and energy inputs. Domestic car-

bon emissions stem from a carbon-based energy input, which is produced from capital and labor.

Rest-of-the-world (ROW) carbon emissions are exogenously given in the benchmark version of

the model, although the quantitative analysis also considers a non-zero global emissions response

elasticity to U.S. abatement efforts. The government must raise a given amount of revenues for

government consumption, transfers, and funding for climate change adaptation through distor-

tionary taxes on labor, capital, intermediate energy inputs, and carbon emissions.13 Climate

13 In particular, lump-sum taxes are assumed to be infeasible, in the Ramsey tradition. It is moreover assumed
that the revenues raised from Pigouvian carbon taxes are insuffi cient to meet government revenue needs, and
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change affects the economy through six channels: (i) temperature change alters aggregate pro-

ductivity, (ii) temperature change enters household utility directly, (iii) sea level rise depreciates

the capital stock, (iv) temperature change affects the cost of providing government services, (v)

temperature change affects government transfers to households, (vi) sea level rise affects the

government’s optimal expenditures on coastal protection efforts, and (vii) temperature change

affects the government’s optimal adaptation expenditures.

Households

A representative household has well-behaved preferences over consumption Ct, labor supply Lt,

and the climate, summarized by mean atmospheric surface temperature change Tt. The house-

hold’s (dis)utility over climate change further depends on society’s adaptive capacity to reduce

utility damages, Λu
t . Lifetime utility U0 is given by:

U0 ≡
∞∑
t=0

βtU(Ct, Lt, Tt,Λ
u
t ) (3)

Pure utility losses from climate change may reflect domestic non-production impacts, such as

damages to national parks and biodiversity existence value losses, or also U.S. household disutility

over climate impacts in other countries. We assume additive separability between preferences

over consumption, leisure, and the climate, and that adaptive capacity reduces the disutility

from climate change via:

U(Ct, Lt, Tt,Λ
u
t ) = v(Ct, Lt) + h[(1− Λu

t )Tt] (4)

Intuitively, if adaptive capacity was at 100% (Λu
t = 1), climate impacts on utility would be fully

neutralized. Each period, the household allocates his income between consumption, the purchase

of one-period government bonds Bt+1 (at price ρt), and investment in the capital stock Kt+1. The

household’s income derives from net-of-tax (τ lt) labor income wt(1− τ lt)Lt, net-of-tax (τ kt) and

depreciation (δ(SLRt,Λ
slr
t )) capital income

{
1 + (rt − δ(SLRt,Λ

slr
t ))(1− τ kt)

}
Kt, government

bond repayments Bt, profits from the energy production sector Πt, and government transfers

GT
t (Tt), which are restricted to be non-negative and may be affected by climate change. The

capital depreciation rate depends on sea level rise (SLR) SLRt as well as coastal protection level

Λslr
t . Households take both the climate and adaptive capacities as given. The final consumption

good is normalized to be the untaxed good. The household’s flow budget constraint each period

that the government can commit to a tax series ex-ante (see Barrage (2020a) for further discussion).
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is thus given by:14

Ct+ρtBt+1+Kt+1 ≤ wt(1−τ lt)Lt+
{

1 + (rt − δ(SLR,,Λ
slr
t ))(1− τ kt)

}
Kt+Bt+Πt+G

T
t (Tt) (5)

As usual, the household’s first order conditions imply that savings and labor supply are governed

by the following decision rules:

Uct
Uct+1

= β
{

1 + (rt+1 − δ(SLRt,Λ
slr
t ))(1− τ kt+1)

}
(6)

−Ult
Uct

= wt(1− τ lt) (7)

where Uit denotes the partial derivative of utility with respect to argument i at time t.

Production

The final consumption-investment good is produced with a constant returns to scale technology

using capital K1t, labor L1t, and energy Et inputs, and is assumed to satisfy the standard Inada

conditions. In addition, output is affected by both the state of the climate Tt and adaptive

capacity in final goods production, Λy
t :

Yt = (1−D(Tt)(1− Λy
t )) · A1tF̃1(L1t, K1t, Et) (8)

= F1(A1t, Tt,Λ
y
t , L1t, K1t, Et) (9)

where A1t denotes an exogenous total factor productivity parameter. Once again, if adaptive

capacity were at 100% (Λy
t = 1), climate impacts would be neutralized. The modeling of climate

production impacts as multiplicative factor was pioneered by Nordhaus (e.g., 1991) and reflects

effects aggregated across sectors. Note that the interpretation of D(Tt) here may differ from

standard setups in that it represents damages gross of any (public) adaptation.

Profit maximization and perfect competition imply that marginal products of factor inputs,

denoted by F1it for input i at time t, are equated to their prices in equilibrium. Letting pEt
14 As in Barrage (2020a), we assume that (i) capital holdings cannot be negative, (ii) consumer debt is bounded

by some finite constantM via Bt+1 ≥ −M , (iii) purchases of government debt are bounded above and below
by finite constants, and (iv) initial asset holdings B0 are given.
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denote the price of energy inputs, these conditions imply:

F1lt = wt (10)

F1Et = pEt

F1kt = rt

Energy inputs Et are produced from capital K2t and labor L2t with constant returns to scale:

Et = A2tF2t(K2t, L2t) (11)

Energy is generally carbon-based, but producers can provide fraction µt of energy from clean or

zero-emissions technologies at an additional cost Θt(µtEt). Given perfect competition, energy

sector profits are thus given by:

Πt = (pEt − τ It)Et − [(1− µt)Et]τEt − wtL2t − rtK2t −Θt(µtEt) (12)

where pEt represents the price of energy, τ It is an excise intermediate goods tax, and τEt is an

excise tax on carbon emissions EM
t ≡ (1− µt)Et.15

Both capital and labor are assumed to be perfectly mobile across sectors, with associated

market clearing conditions:

Kt = K1t +K2t (13)

Lt = L1t + L2t

Profit maximization thus implies that prices and marginal factors will be equated,

[pEt − τ It − τEt]F2lt = wt (14)

[pEt − τ It − τEt]F2kt = rt

and that energy producers abate µt until its marginal cost equals the carbon price τEt :

τEt = Θ′t(µtEt) (15)

15 Since producers face two decision margins on energy levels and emissions, we allow for two policy instruments
to form a ‘complete’tax system in the sense of Chari and Kehoe (1999).
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Government

The government faces the following tasks. First, it must raise revenues to finance a sequence

of public consumption requirements {GC
t (Tt) > 0}∞t=0 and household transfers {GT

t (Tt) ≥ 0}∞t=0,
and pay off inherited debt BG

0 . One of the main novelties here is that the cost of providing

these services may depend on the climate. Second, at its discretion, the government can devote

resources to produce adaptive capacity. Protection against sea level rise depends on an adaptive

capital stock AKt (e.g., sea walls):

Λslr
t = f slr(AKt) (16)

which takes AK0 as given and follows law of motion:

AKt = AKt−1(1− δslr) + λslrt (17)

In the quantitative version of the model, adaptive capacity further depends on the stock of

adaptive capital relative to the value of capital at risk, in line with, e.g., Fried (2019). Next,

adaptive capacity against other production and utility damages depends on flow expenditures λyt
and λut , respectively:

Λi
t = f i(λit) for i ∈ {u, y} (18)

Finally, the government has the following revenue raising instruments at its disposal. It can

impose linear taxes on labor and capital income, levy excise taxes τ It on energy inputs and

τEt on carbon emissions, and it can issue new, one-period bonds BG
t+1. The public flow budget

constraint is thus given by:

GC
t (Tt)+GT

t (Tt)+λyt +λ
u
t +λslrt +BG

t = τ ltwtLt+τ ItEt+τEtE
M
t +τ kt(rt−δ(SLRt,Λ

slr
t ))Kt+ρtB

G
t+1

(19)

The market clearing condition for government bonds is given by:

BG
t+1 = Bt+1 (20)

We note that the benchmark closed model specification (20) captures only the domestic market

U.S. government debt. In the quantification of the model, we distinguish domestically owned

and foreign-owned U.S. debt to ensure an accurate representation of asset levels currently held
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by the U.S. public.16

One important concept going forward is the marginal cost of public funds (MCFt), which mea-

sures the welfare cost of raising an additional dollar of government revenues. If the government

could impose lump-sum taxes, then the marginal cost of public funds would be equal to one,

as households would give up $1 in a pure transfer to the government. In contrast, if revenues

must be raised through distortionary instruments, the costs of raising $1 equal $1 plus the excess

burden (or marginal deadweight loss) of taxation. Following the literature, we formally define

the MCFt as the ratio of public to private marginal utility of consumption:

MCFt ≡
λ1t
Uct

(21)

where λ1t is the Lagrange multiplier on the resource constraint in the planner’s problem (see

Appendix). The wedge between the marginal utility of public and private incomes thus serves

as a measure of the distortionary costs of the tax system.

Climate System

Global temperature change depends on the history of global greenhouse gas emissions, that is,

the sum of rest-of-world (ROW) emissions EM,ROW
t and domestic emissions {EM

s }ts=0 ≡ {(1 −
µs)Es}ts=0. . Atmospheric temperature change Tt at time t then formally depends on the history
of carbon emissions, initial conditions S0 (e.g., carbon stocks, ocean temperatures, etc.), and

exogenous shifters {ηs}ts=0 (e.g., land-based emissions) via:

Tt = z
(
S0, E

M
0 + EM,ROW

0 , EM
1 + EM,ROW

1 , ..., EM
t + EM,ROW

t ,η0, ....ηt

)
(22)

where:
∂Tt+j
∂EM

t

≥ 0 ∀j, t ≥ 0

Sea level rise at time t, in turn, is modeled as a function of the history of global temperature

change, along with initial condition SLR0, following the semi-empirical specification due to

Rahmsdorf (2007):

SLRt = G(SLR0, T1, T2, ...Tt) (23)

16 Of course abstracting from foreign demand for U.S. government debt raises additional potential issues. On
the one one hand, ignoring the current stock of foreign-held debt may under-estimate the government’s
future revenue-raising obligations in the intertemporal budget constraint. On the other hand, abstracting
from the foreign supply of loanable funds may lead to an over-estimate of the costs of borrowing for the U.S.
government.
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Competitive Equilibrium and Optimal Policy

Competitive equilibrium in this economy is defined in the conventional way. The social planner’s

problem is to maximize the representative agent’s lifetime utility (3) subject to the constraints

of (i) feasibility, (ii) the optimizing behavior of households and firms, and (iii) laws of nature

(22)-(23). We follow the primal approach of solving for optimal allocations after having shown

that and how one can construct prices and policies such that the optimal allocation will be

decentralized by optimizing households and firms.17 Solving for optimal allocations, rather than

for optimal tax rates, also avoids normalization issues such as documented by Williams (2001).

Before proceeding to the model quantification, this section theoretically characterizes some

of the implications of fiscal costs. First, one may ask how fiscal impacts affect the social cost of

carbon, or the optimal carbon price. For notational convenience, first define the discount factor

Mt,j as:

Mt,j ≡

 1 if j = 0

βj
j∏

m=1

1
(1+rt+m−δt+m) o.w.

(24)

Result 1 The optimal carbon price in period t > 0, that is, the carbon price that can decentralize

17 See, e.g., Chari and Kehoe (1999) for a general introduction, and Barrage (2020a) for the relevant proof of
the validity of the setup in the benchmark COMET.
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the optimal allocation along with other taxes set appropriately, is implicitly defined by:

τ ∗Et =

∞∑
j=0

Mt,j ·
[
−∂Yt+j
∂Tt+j

]
︸ ︷︷ ︸
Output Impacts

· ∂Tt+j
∂EM

t

(25)

+
∞∑
j=0

βj(
1

MCFt
)

[
−UTt+j
Uct

]
︸ ︷︷ ︸
Utility Impacts

∂Tt+j
∂EM

t

(26)

+
∞∑
j=0

[ ∞∑
m=0

Mt,j+m ·
∂δKt+m

∂SLRt+m

∂SLRt+m

∂Tt+j

]
︸ ︷︷ ︸

Sea Level Rise Impacts

∂Tt+j
∂EM

t

(27)

+
∞∑
j=0

Mj ·

∂GC
t+j

∂Tt+j︸ ︷︷ ︸


Gov’t Cons. Impacts

∂Tt+j
∂EM

t

(28)

+
∞∑
j=0

βj(
MCFt − 1

MCFt
)

[
∂GT

t+j

∂Tt+j

]
︸ ︷︷ ︸
Gov’t Transfer

Impacts

(
Uct+j

[UcctCt + Uct + UlctLt − UcctGT
t (Tt)]

)
︸ ︷︷ ︸

Offer Curve Impacts

∂Tt+j
∂EM

t

(29)

Intuitively, this expression represents the present discounted vaule sum of marginal damages

from another ton of U.S. carbon emissions at time t, adjusted for the fiscal setting. The impacts

of emissions on future temperature change are captured by ∂Tt+j
∂EMt

. Each period’s temperature

change, in turn, contributes to sea level rise, as captured by the additional summation term
∂SLRt+m
∂Tt+j

in (27). The economic impacts of these climatic changes are then valued as follows.

First, the present discounted value of output impacts in (25) are valued fully, in line with prior

literature. Second, and in contrast, utility impacts in (26) are "discounted" by the marginal cost

of public funds. That is, in a setting with distortionary taxes where MCF > 1, the optimal

carbon tax internalizes less than the full Pigouvian cost of marginal utility damages. This result

is well known from the literature focusing on the revenue impacts of pollution levies alongside

distortionary taxes (see Bovenberg and Goulder, 2002). Third, capital losses due to sea level

rise are again valued fully in (27), as they fall on the production side of the economy. Fourth,

the optimal carbon price should fully internalize government consumption cost increases due to

climate change in (28). To the best of our knowledge, this type of impact has not been considered

in prior literature. Finally, and perhaps most surprisingly, we find that the social cost of carbon

must account for government transfer impacts of climate change if the marginal cost of public

funds exceeds unity (29). In a standard setting where it is implicitly assumed that governments
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can raise revenues through lump-sum transfers, MCF = 1 and externality effects on transfers

would not be included in the calculation of social cost. Here, however, a first-order welfare effect

arises due to climate-induced changes in government transfer payments, and the resulting changes

in households’offer curves, which may tighten the set of equilibria that can be decentralized as

a competitive equilibrium. Importantly, these results showcase that consideration of climate

change’s fiscal costs may alter the structure of the optimal carbon price, calling for the inclusion

of effects - such as on transfer payments - which are generally not considered.

The next theoretical question one may ask is: How does accounting for the welfare costs of

raising public funds affect optimal public adaptation expenditures?

Result 2 Public funding of both (i) flow adaptation inputs to reduce climate impacts on final
goods production and (ii) investment in adaptation capital to reduce sea level rise impacts

on capital depreciation should remain undistorted regardless of the welfare costs of raising

revenues. That is, these adaptation expenditures should be fully provided at the optimum.

Proof: See Appendix. While the actual dollar amount of optimal spending will differ across fiscal

scenarios, Result 2 implies that there is no "wedge" (or distortion) in the optimality condition

for adaptation spending to reduce production and capital damages from climate change: the

government should invest until the additional benefit of avoided output losses equals the marginal

adaptation cost.18 Intuitively, while it is costly for the government to raise revenues, at the

optimal level these expenditures ‘pay for themselves’ by increasing productivity and thereby

expanding the bases of labor and capital income taxes. More broadly, this result follows from

the well-known property that optimal tax systems maintain aggregate production effi ciency under

fairly general conditions (Diamond and Mirrlees, 1971).19

Next, and in contrast, consider the adaptation spending to reduce utility impacts of climate

change (e.g., beach nourishment to maintain public parks). While these expenditures increase

utility, they do not yield a productivity benefit that could counteract the macroeconomic costs

of raising the revenues required to fund them. Consequently, we find that the optimal provision

of these adaptation expenditures is distorted in a setting with costly taxation.

Result 3 Public adaptation funding to reduce direct utility losses from climate change should be
distorted proportionally to the marginal cost of raising public funds. That is, provision of

18 More formally, the optimal policy equates the marginal rate of transformation between consumption Ct and
adaptive capacity Λyt through adaptation expenditures λ

y
t and avoided output losses from climate change in

the final goods sector.
19 By noting that flow adaptation expenditures constitute a public input to production, this result is partly also

in the vein of Judd (1999), who shows that public flow productive inputs should always be fully provided,
regardless of the distortionary costs of raising revenues.
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the climate adaptation good should be effectively taxed alongside the consumption of other

final goods if the government raises revenues with distortionary taxes.

Proof: See Appendix. Result 3 implies that residual (net-of-adaptation) climate damages

may be higher in a setting with distortionary taxes as even optimized public adaptation expen-

ditures may be lower compared to a standard setting without fiscal constraints.

4 Model Calibration

4.1 Production

First, as is common in the literature, I assume a Cobb-Douglas aggregate production technology

for the final good in (8):

F̃1(K1t, L1t, Et) = Kα
1tL

1−α−v
1t Ev

t

Expenditure shares are set at standard values α = 0.3 and v = 0.03 (e.g., GHKT, 2014). Base

year total factor productivity (TFP) A10 in (8) is inferred by matching initial U.S. output ($17.4

trillion in $2012, Source: FRED) given initial capital, labor, and energy inputs. Base year energy

input E0 is set at 1.375 gitatons of carbon (GtC, Source: EPA, 2017). Normalizing available

work time per annum to unity, L0 is set at initial labor time share 0.2324 based on OECD

data for the United States in 2015 (OECD, 2020), times the initial population of 320 million.

This aggregate labor is distributed between the final good and energy sectors based on profit

maximization and initial energy production.20 The initial aggregate private capital stock K0 is

inferred assuming a real interest rate of 5% and a depreciation rate of 10%, and this capital

stock is distributed across sectors to be consistent with profit maximization and initial energy

production.21 Future productivity growth is taken as exogenous and quantified based on the

2010 RICE Model parameters for the United States (Nordhaus, 2011). The base year savings

rate is set to match 20.258% of GDP as per World Bank data for the United States in 2015.

Both fossil fuel-based and clean energy are produced with Cobb-Douglas technology:

Et = A2t(K
1−αE
2t LαE2t ) (30)

The labor share is set to αE = 0.403 based on Barrage (2020a). The quantification of abatement

cost function Θt(µtEt) structurally follows the same approach as the global COMET but for the

United States, that is, it converts the RICE model’s U.S. abatement cost estimates (Nordhaus,

20 The labor share in final goods production is (1−α− v)/(αE · v+ 1−α− v) = 98.23% at benchmark values.
21 The capital share in final goods production is (α)/((1− αE)v + α) = 94.37% at benchmark values.
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2011) into a per-ton cost measure through a logistic approximation (see Appendix and Barrage,

2020a).

4.1.1 Climate Damages

Production Climate change impacts on production are modeled in a standard quadratic form:

(1−Dt(Tt)) =
1

1 + αy,1Tt + αy,2T 2t
(31)

I consider two quantifications. The first is based on U.S. damage estimates from the RICE model

(Nordhaus, 2011) with two important adjustments. One, given that sea level rise impacts are

modeled explicitly in the model, I remove them from the RICE damages to avoid double counting.

Two, the DICE/RICE model family aggregates all impacts - both production and non-market

- into an output-equivalent damage function D(Tt). In a setting with distortionary taxes, the

distinction between these two damages becomes welfare-relevant. I therefore disaggregate the

sectoral impact estimates underlying the U.S. RICE damage function into production and utility

damages following the delineation of Barrage (2020a), which, for the United States, implies

around 70% of damages from 2.5◦C warming in the production sector, and 30% affecting utility

directly. The parameter θ1 in (31) is set to match the resulting production loss estimate of 0.616

percent output loss due to 2.5◦C warming, yielding αy,1 = 0 and αy,2 = 0.00099171.

As an alternative I also consider more recent empirical estimates of U.S. damages by Hsiang

et al. (2017), which imply aggregate output-equivalent damages of 1.62 percent of output due to

2.5◦C warming. Importantly, this figure includes both some non-market impacts (mortality and

crime) and coastal impacts, both of which should be separated out for an appropriate calibration

of D(Tt) in our setting. Lacking such a separation, I presently interpret their estimates as pure

production impacts and set direct utility impacts in the Hsiang et al. damage runs to zero. This

specification may over-estimate the revenue impacts of climate change. The relevant parameters

in (31) are αy,1 = 0.00283 and αy,2 = 0.00146.

Sea Level Rise Both gross sea level rise damages and the costs and benefits of adaptation are

quantified based on the EPA’s Coastal Property Model runs for the Climate Change Impacts

and Risk Analysis project (EPA, 2017). The Coastal Property Model (Neumann et al., 2014a,b)

considers detailed locally differentiated property values and vulnerabilities, sea level rise effects

(based on Kopp et al., 2014; and NOAA, 2017), and tropical cyclone surge impacts of climate

change (building on Emanuel et al., 2008). It estimates costs resulting both from increased storm

surge damages and property abandonement. Importantly, the model also considers and optimizes

adaptation responses, as described below.
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In order to construct a gross-of-adaptation SLR damage function, I utilize model results

from ‘no adaptation’ runs for both RCP scenarios 4.5 and 8.522 Total gross damages appear

approximately linear in global mean sea level rise (see Appendix Figure A5). I translate these

level damages into depreciation rates by (i) deflating future values into base year property value

equivalents, and (ii) dividing by the base year capital stock. Regressing the resulting observations

of depreciation rates on global sea level rise values yields a benchmark estimate of 0.0186% capital

loss per decade per centimeter SLR (over 2000 base period values). Letting δ denote baseline

capital depreciation, I consequently set capital depreciation in (5) to be:

δ(SLRt,Λ
slr
t ) = δ + δSLR · SLRt · (1− Λslr

t ) (32)

= δ + 0.000186 · SLRt · (1− Λslr
t )

4.2 Government

4.2.1 Government Consumption and Transfer Requirements

Government consumption GC
t (Tt) and transfer GT

t (Tt) requirements are specified as follows. Let

{GC
t > 0}∞t=0 and {GT

t > 0}∞t=0 denote the exogenous baseline sequences of government consump-
tion and transfer requirements gross of climate change. According to U.S. National Income and

Product Accounts data (BEA, 2019), total U.S. government expenditures in the model base year

2015 included $2.7 trillion in transfer payments and $2.7 trillion in consumption and subsidies

($2015). Base year values for GT
t and GC

t are set accordingly. In future years, total baseline

(i.e., without climate change) government expenditures grow at the rates of population and pro-

ductivity growth (following, e.g., Goulder, 1995), and that the consumption share remains at its

base year value (49.7 percent)

Climate change impacts on these expenditure requirements are modeled based on the existing

program cost estimates described in Section 2, and specified as:

GC
t (Tt) = GC

t (1 + αC,1(Tt) + αC,2(Tt)
2) (33)

GT
t (Tt) = GT

t (1 + αT,1(Tt) + αT,2(Tt)
2)

I calibrate the fiscal damage function parameters to match the estimates underlying Table 5,

and, for heat-related healthcare expenditure impacts, the damage function (2). The resulting

parameter values are αC,1 = 0.0046, αC,2 = −0.00008, αT,2 = 0.0011, and αT,2 = 0.

22 We are extremely grateful to Jeremy Martinich for sharing both model results and input assumptions.
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4.2.2 Endogenous Public Sea Level Rise Adaptation

Adaptation technology is quantified based on the EPA’s Coastal Property Model (Neumann

et al., 2014a,b) runs for the Climate Change Impacts and Risk Analysis project (EPA, 2017).

The model optimizes adaptation responses to sea level rise in the forms of beach nourishment,

shoreline armoring (e.g., sea walls), and property elevation. I quantify aggregate adaptation

effectiveness based on their model results from ‘adaptation’runs for RCP scenarios 4.5 and 8.5.

These provide information on both annual expenditures on different coastal protection measures,

and residual damages incurred. As per (17), I assume that adaptive capital at time t is given by:

AKt ≡
t−1∑
s=0

(λslrs (1− dslr)s) + λslrs (34)

In line with prior literature (e.g., Fried, 2019), adaptive capacity depends on the protective

capital stock relative to gross damages (i.e., capital at risk) via:

ΛSLR
t =

(
γ1

AKt

(δSLR · SLRt ·Kt)

)γ2

(35)

I quantify adaptation cost parameters γ1, γ2, and d
slr by minimizing the sum of squared devi-

ations between equations (34), (35), and an intra-temporal optimality condition for adaptation

expenditures,23 and the ‘observations’of ΛSLR
t , AKt, and gross damages obtained from the EPA’s

Coastal Property Model, all aggregated to the decadal level.24 That is, we effectively fit parame-

ters to create a reduced-form aggregate representation for the detailed EPA model results. The

deviation-minimizing parameters are γ1 = 10.1752, γ2 = 0.0945, and dslr = 0.2462, implying an

annual protective capital depreciation rate of 2.79%.

4.2.3 Other Public Adaptation

While there are many examples and some quantifications of public adaptation measures beyond

coastal protection, mapping out these potential expenditures and their corresponding benefits at

a systemic level is diffi cult and fraught with uncertainties. For utility damages, relevant examples

range from expenditures to protect and repair national parks from climate damages to public

funding for mental health support after disasters (e.g., FEMA Crisis Counseling Assistance and

23 The intra-temporal optimality condition for minimizing the sum of gross damages and adaptation costs is

that ∂Λslr
t

∂λslrt
= 1

GrossDamagest
.

24 We further add one assumption-based moment, namely that spending only 50% of prescribed adaptation
funds in the base 2010-2020 period would achieve 60% of the benchmark adaptation effectiveness. This
moment was added as the Coastal Property Model results imply very high levels of optimal adaptation
effectiveness, around 95% or higher, across all periods, thus limiting the range of ‘observations’available to
quantify the full curvature of the adaptation cost function.
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Training Program). However, properly accounting for the relationship between these public

expenditures and climate damages would require these impact channels to also be accounted for

in the damage function, which does not currently match this level of detail in its foundations.

Similar issues arise with public inputs to reduce production damages, such as research funding on

climate-resilient crops. While Barrage (2020b) uses a stylized representation of public adaptation

efforts at a global level based on prior literature (Argawal et al., 2010), for the present analysis

we currently abstract from highly speculative potential quantifications of these measures and

focus on sea level rise adaptation Λslr
t for which higher quality and U.S.-specific estimates are

available as outlined in the prior section.

4.2.4 Initial Taxes and Debt

Base year effective tax rates: According to OECD estimates, the average effective labor tax

wedge in the United States between 2010-2018 has fluctuated between 29.6% and 31.8% with

an average value of 30.8778%. The average effective consumption tax has been estimated at

6.1% (Carey and Tchilinguirian, 2000), implying an overall effective labor-consumption wedge

of 35.09%.25 For tax burdens on capital, a detailed review by the Congressional Budget Offi ce

(2014) estimates a 29% effective marginal rate on business capital.26

Government Debt: The benchmark calibration sets B0 based on the 2015 federal debt held

by the domestic public at 41.1% of base year GDP (FRED, 2020).

4.2.5 Preferences

The specification of preferences is as in the benchmark COMET but with quantitative adjust-

ments for the U.S. setting. Utility is defined over per-capita consumption ct ≡ Ct/Nt, where Nt

is the period t population and labor supply is lt ≡ Lt/Nt. The dynastic household maximizes the

population-weighted lifetime utility:

∞∑
t=0

βtNtU(ct, lt, Tt)

The U.S. population grows from 320 million in 2015 to 417.5 million by 2105 and asymptotes

towards 448 million, matching projections from RICE (Nordhaus, 2011).

25 Following Carey and Tchilinguirian (2002), the labor-consumption wedge is computed as τ cl = τ l+(1−τ l)τ .
26 CBO (2014) also estimate a lower rate of 18% if owner-occupied housing is included, but this figure does not

account for local property taxes, leading us to prefer the more self-contained estimate for business capital.
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The utility function is specified as follows:

U(ct, lt, Tt) =
[ct · (1− ςlt)γ]

1− σ

1−σ
+

(1 + αuT
2
t )
−(1−σ)

1− σ (36)

Preference parameters are set to jointly match base year labor supply l2015 = 0.2324 and a Frisch

elasticity of labor supply of 1.83, which is the average between the benchmark micro and macro

estimates identified by Chetty et al. (2011), given initial tax rates27 and assumed values of

σ = 1.5 and a decadal utility discount factor of β = (.985)10. In the benchmark model where

damages are quantified based on the RICE model, the climate disutility parameter αu is chosen

to match an aggregate global consumption loss-equivalent of disutility from climate change at

2.5◦C of 0.26% of output (for further discussion see Barrage, 2020a). In the version of the model

where damages are quantified based on Hsiang et al. (2017), non-market impacts are included

in the aggregate damage function so that I set αu = 0.

4.2.6 Carbon Cycle and Climate Model

At present, the COMET adopts the carbon cycle and climate model from the DICE model

(Nordhaus, 2010, 2016). An update to incorporate revisions in line with recent climate science

evidence as described by Dietz et al. (2020) is in progress. Sea level rise resulting from the

history of temperature changes is quantified based on Rahmsdorf (2007).

Given the U.S. focus of the model, rest of the world emissions must be specified. As a baseline

I take business-as-usual emissions projections the 2010 RICE Model, (Nordhaus, 2011). I further

allow for the possibility that rest-of-the-world emissions respond to U.S. abatement efforts as a

reduced form for, e.g., international climate policy agreements and technology spillovers. The

baseline model assumes a global abatement response elasticity of 0.3, implying that for every

percentage point of U.S. emissions reductions, the rest of the world abates 0.3 percentage points

of emissions.

5 Quantitative Results

5.1 Main Results

We present model results across four income tax and two climate policy scenarios. The income

tax scenarios are as follows:
27 Initial tax rates are set to zero in the lump-sum taxation (theoretical first-best) scenarios.
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1. "First-Best": The government can levy non-distortionary lump-sum taxes. This assump-

tion is standard in IAMs in the literature.

2. "Optimized Distortionary": The government can fully optimize its revenue-raising taxes,

but cannot impose lump-sum levies.

3. "Fixed Labor, Variable Capital Income Taxes": Labor taxes are held fixed at business-as-

usual levels τ l = 35.1% but the government can raise additional revenues by raising capital

income taxes. Depending on the scenario, the planner can also tax carbon and energy.

4. "Fixed Capital, Variable Labor Income Taxes": Capital income taxes are held fixed at

business-as-usual levels τ k = 29% but the government can raise additional revenues by

raising labor income taxes. Depending on the scenario, the planner can also tax carbon

and energy.

For U.S. carbon and energy taxation, two scenarios are considered:

1. "No": This business-as-usual scenario assumes no carbon or energy taxes throughout the

21st Century (until 2115).

2. "Opt." The government freely optimizes carbon and energy taxes.

Another critical modeling choices include the rest-of-world carbon emissions response elas-

ticity to U.S. abatement. Our benchmark results assume an elasticity of 0.3, but results for

a value of zero (exogenous rest-of-world emissions) are also presented. Finally, all results use

RICE-based damages unless otherwise noted.

One important point to note is that the social planner in the model considers only domestic

impacts of climate change in the United States. That is, the "optimal" carbon price or social

cost of carbon estimates from the model are not reflective of rest of the world damages, and are

thus too low from a broader effi ciency perspective. For a discussion of fiscal costs at the global

level, see Barrage (2020b).

Results: To begin, Figure 1 presents the projected government expenditure impacts of cli-
mate change in the near-term, which increase from around $220 billion in the 2015-2025 period

to over $800 billion in the 2045-2055 period.28 Increases in existing program costs are projected

to account for the majority of these costs.

28 These figures are from the "Optimized Distortionary" income tax scenario with optimized domestic carbon
taxes in the face of business-as-usual global emissions. Expenditures in the near term are not too different
in other climate policy scenarios due to delays in the climate system assumed in the DICE model and the
stock nature of sea level rise. The former may change with a switch to a climate system representation as
recommended by Dietz et al. (2020).
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Fiscal Costs of Climate Change: Expenditure Impacts
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Figure 7: Expenditure Impacts: Levels

Next, Table 10 presents policy and welfare results for the benchmark model with and without

U.S. climate policy. In the first-best setting - the standard in climate-economy models - labor and

capital income taxes are both zero, and theMCF is equal to unity. Introducing the optimal U.S.

carbon price sequence in this setting yields a domestic welfare gain of $328 billion dollars ($2015

in terms of initial period equivalent variation consumption transfer). Second, in a setting with

optimized distortionary taxes, the government raises most revenues from the labor-consumption

wedge, with an equilibrium marginal cost of public funds of 1.10. In this setting, while the

optimal carbon price level is slightly lower, the welfare gains associated with U.S. climate policy

are over 50% higher than in the standard setting, estimated at $498 billion. Third, in a more

realistic ‘business as usual’fiscal setting where labor income taxes are fixed at current levels, the

government raises additional revenues in part from capital income taxes. Without a carbon price,

the average effective capital income tax is 35.3% at a marginal cost of funds of 1.56. Introducing

climate policy could lower capital income tax rates to 34.5% on average, thus also lowering the

MCF to 1.52, and, importantly, yielding overall welfare gains of more than $1 trillion. That

is, in a fiscally constrained setting, the welfare gains associated with carbon pricing are more

than triple their value in the first-best setting generally assumed in the literature. Fourth, if

capital income taxes remain fixed and the government raises additional revenue mainly through

labor income taxes, the marginal cost of funds is again low at 1.10. The optimal carbon price

in this setting nonetheless yields a welfare gain of $395 billion, around 20% higher than in a

first-best world. Appendix Table A1 presents analogous results for a setting with exogenous
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rest-of-world emissions. While the levels of optimal carbon prices and welfare gains associated

with carbon pricing are generally lower in this setting, most relevant for this paper’s focus, the

relative importance of fiscal interactions is unchanged. For example, the domestic benefits of

carbon pricing increase from $129 billion in a setting with lump-sum taxation to between $144

and $497 billion in a more realistic fiscal setting with distortionary taxes.

Table 7: Benchmark Results

Labor Capital Carbon ∆Welfare

Scenario Tax Tax MCF Tax EV ∆C2015

Income Carbon ($/mtC) ($2015 bil.)

& Energy Avg. 2025-2215 2015-25

First-Best No 0 0 1.00 0

First-Best Opt. 0 0 1.00 32 328

Opt. No 40.4 6.3 1.10 0

Opt. Opt. 40.3 5.2 1.10 28 498

BAU τ l, No 35.1 35.3 1.56 0

vary τ k Opt. 35.1 34.5 1.52 25 1,021

BAU τ k, No 39.6 29.0 1.10 0

vary τ l Opt. 39.6 29.0 1.10 28 395

Rest-of-world emissions response elasticity 0.3, RICE Production Damages

Table 8 shows results analogous to the benchmark in Table 7 but with climate change pro-

duction impacts quantified based on Hsiang et al. (2017). As expected, both the optimal carbon

price and the welfare gains associated with climate policy are higher in this setting. Importantly

for the purposes of this study, however, the importance of fiscal considerations is robust. Do-

mestic climate policy can lower the marginal cost of public funds non-trivially, and its welfare

benefits increase by up to a factor of three once the fiscal setting is taken into account.
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Table 8: Robustness - Hsiang et al. (2017) Production Damages

Labor Capital Carbon ∆Welfare

Scenario Tax Tax MCF Tax EV ∆C2015

Income Carbon ($/mtC) ($2015 bil.)

& Energy Avg. 2025-2215 2015-25

First-Best No 0 0 1.00 0

First-Best Opt. 0 0 1.00 48 508

Opt. No 40.1 5.4 1.07 0

Opt. Opt. 40.1 5.4 1.07 42 697

BAU τ l, No 35.1 41.4 1.77 0

vary τ k Opt. 35.1 39.9 1.71 37 1,771

Rest-of-world emissions response elasticity 0.3

Sensitivity: As previously noted, the benchmark model’s quantification of fiscal climate impacts
is subject to significant uncertainty and very likely presents a lower bound. Figure 8 thus

showcases how the social cost of carbon in the initial decade (2015-2025), specifically measured

by the optimal U.S. carbon price, varies as a function of the existing program fiscal cost changes

per degree warming. The results indicate that, even at seemingly small values, fiscal costs can

have significant implications for the social cost of carbon. Each percentage point increase in

government consumption (transfers) per degree warming translates into optimal carbon price

increases of around 20% (10%). Even at our benchmark values, the estimated implications of

fiscal costs for climate policy are thus quantitatively on par with the importance of factors such

as climate tipping points (Lemoine and Traeger, 2014), ambiguity aversion (Lemoine and Trager,

2016), or model uncertainty (Rudik, 2019) documented in prior studies.

6 Conclusion

Climate change is increasingly being recognized as a potential threat to fiscal sustainability. Both

policy and academic studies have documented numerous channels through which a changing

climate may alter public budgets (e.g., Egenhofer et al., 2010; CBO, 2021). This paper presents

what is to the best of our knowledge a first systematic quantification and integration of these

channels into a macroeconomic integrated assessment model. The analysis first demonstrates

that fiscal costs have qualitative implications for climate policy: the social cost of carbon must

account for climate impacts on both government consumption and, perhaps surprisingly, transfer

payments to households when the marginal cost of raising public funds exceeds unity. I then
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present a novel bottom-up quantification of climate impacts on government expenditures in

the United States. The quantification synthesizes prior studies and adds an empirical analysis of

public healthcare costs of extreme temperatures and wildfires. Quantitatively, while the resulting

estimates are obviously subject to fundamental uncertainties, I find large potential effects of

both public expenditure impacts and fiscal interactions of climate policy more. For example,

the domestic benefits of U.S. climate policy may be under-estimated by up to a factor of three

by conventional climate-economy models that abstract from distortionary taxes and government

expenditure requirements.

The analysis makes important simplifying assumptions. For example, local, state, and federal

finances are all aggregated into a central fiscal authority. In reality, the distribution of climate

change’s fiscal impacts across levels of government may be important. Certain costs - such

road elevation to protect against flooding - may fall disproportionately on local governments

which also face a higher cost of raising public funds. Indeed, recent empirical work has found

significantly higher long-term municipal bond issuance costs in U.S. counties more vulnerable to

climate change (Painter, 2020), consistent with less-than-complete risk sharing. Consideration

of regional heterogeneity also raises distributional questions which are currently outside the

scope of the analysis. More broadly, our framework does not account for income inequality

and redistribution as important aspects of the tax system. Indeed, very little work to date has

considered climate policy in dynamic heterogeneous agent economies in general, let alone with
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tax policy. These are all critical areas for future research. Importantly, however, we conjecture

that consideration of factors such as higher local fiscal exposure to climate risks would likely

serve to increase the potential relevance of climate fiscal costs for policy design.

At the time of this writing, the United States faces significant fiscal challenges. Due to

the COVID-19 pandemic and response, the U.S. federal debt held by the public has risen from

79 to 105 percent of GDP between the first and second quarters of 2020 (FRED, 2020). The

U.S. Congressional Budget Offi ce moreover projects continued increases in U.S. debts under

current policy (CBO, 2020). This paper’s results suggest that climate change may exacerbate

these trends. Importantly, however, the analysis also finds that appropriately designed domestic

climate policy and international climate agreements may allow for lower tax burdens and yield

large net economic benefits for the U.S. economy.
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7 Appendix

7.1 Climate Impacts Quantification

Figure A1 showcases the estimated marginal impact of an additional freezing day (with minimum
temperatures below 0C) on public health expenditures based on Table 5 Column (1) results
evaluated at a baseline climate of 1981-2010. It must be noted that these estimates were not
statistically different than zero. Next, Figures A2 and A3 show the projected marginal impacts of
an additional hot day evaluated at mid- and late-century climates, that is, inclusive of projected
adaptation (based on Table 5 Column (1) results).
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Figure A1

Figure 9: Figure A2

7.1.1 Reduced-Form Downscaling

In order to map the warming scenario-specific estimates of county-level weather outcomes from
Rasmussen et al. (2016) into an aggregate fiscal damage function specified as a function of mean
global atmospheric surface temperature change, I estimate a reduced-form linear downscaling
model for each county j :

∆Dm,j,τ = λj,mTτ (37)

Here, ∆Dm,j,τ denotes the predicted change in our variable of interest with m ∈ {"hot" days,
"freezing" days}, such as the predicted change in the number of hot days per year in county j in
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Figure 10: Figure A3

Figure 11: Figure A4
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period τ ∈ {2020− 2039, 2040− 2069, 2080− 2099} under the RCP 8.5 warming scenario. The
variable Tτ represents the corresponding mean global surface temperature warming in period τ
under RCP 8.5, which I obtain from a MAGICC6 climate model run (Meinhausen et al., 2011).
Figure A3 compares the linearly predicted changes in the number of hot days per year for each
county-period from this regression ( ̂∆Dhot,j,τ = β̂j,hotTτ ) against the detailed Rasmussen et al.
(2016) values (median value based on the CMIP5 ensemble). The linear model (37) appears to
fit these projections well, with a correlation coeffi cient of 0.984. Figure A4 repeats this exercise
but for m ="freezing" days, where the linear fit again appears good with a correlation coeffi cient
of 0.983.

Figure A3 Figure A4

7.1.2 Extreme Heat Damage Function

Conceptually, an aggregate damage function should tell us the change in public medical expen-
ditures due to a change in global temperatures Tt. For each county this change can informally
be decomposed as:

%∆MedicalCosts
∆GlobalTemperature

=
%∆MedicalCosts

∆HotDays
∆HotDays

∆GlobalTemperature
(38)

where county subscripts are omitted for notational simplicity. From the impact estimating equa-
tion (1), we have that:

%∆MedicalCosts
∆HotDays

= [β̂hot + γ̂hotDMEANhot,τ ] (39)

where τ denotes the time period. From the reduced-form downscaling (37), we also have that:

∆HotDays
∆GlobalTemperature

= λ̂ (40)

Importantly, (40) also implies that we can write the future mean number of hot days as a function
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of the base year climate, the downscaling coeffi cient, and global temperature change:

DMEANhot,τ = DMEANhot,0 + λ̂Tτ (41)

Combining (38)-(41) and arranging to obtain the predicted total change in public medical ex-
penditures as a function of global temperature change Tτ yields the desired expression (2):

%∆PublicMedicalCostsj,t = [β̂hotλ̂j + γ̂hotDMEANhot,j,0λ̂j] · Tt + [γ̂hotλ̂
2

i ] · T 2t

7.1.3 Sea Level Rise Costs

Figure A5 showcases estimates of gross of adaptation sea level rise damages from EPA (2017)
over time and across two emissions scenarios, plotted against corresponding median global sea
level rise values from Kopp et al. (2017).
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Figure A5: Gross Sea Level Rise Costs from EPA (2017)

7.2 Theory Setup and Results

It is straightforward to show (following an analogous derivation to the one in Barrage, 2020a)
that the primal social planner’s problem for our framework is as follows:
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max
∞∑
t=0

βt[[v(Ct, Lt) + h[Tt] + φ
[
UctCt + UltLt − UctGT

t (Tt)
]
]︸ ︷︷ ︸

≡Wt

+
∞∑
t=0

βtλ1t

[ {
[1−D(Tt)] · A1tF̃1t(L1t, Et, K1t)

}
+ (1− δ(SLRt,Λ

slr
t )Kt

−Ct −Kt+1 −GC
t (Tt)− λyt − λut − λSLRt −Θt(µtEt)

]

+

∞∑
t=0

βtξt[Tt −z (S0, (1− µ0)E0, (1− µ1)E1, ..., (1− µt)Et,η0, ....ηt)] (42)

+

∞∑
t=0

βtζt[SLRt − f slr(T0, T1, ...Tt)] (43)

+
∞∑
t=0

βtλlt [Lt − L1t − L2t]

+
∞∑
t=0

βtλkt [Kt −K1t −K2t]

+
∞∑
t=0

βtωt [F2t(AEt, K2t, L2t)− Et]

+
∞∑
t=0

βtηSt
[
fSLR(AKt)− ΛSLR

t

]
(44)

+
∞∑
t=0

βtηakt[AKt(1− δslr) + λslrt − AKt+1] (45)

−φ {Uc0 [K0 {1 + (F1k0 − δ)(1− τ k0)}+B0]}

7.2.1 Result 1

To derive our optimality conditions of interest, first combine the planner’s first-order conditions
for t > 0 with respect to SLRt and Tt to express the social cost of carbon emissions in utility
terms, ξt :

(−UTt) + φUct
∂Gt

∂Tt
− λ1t

∂Yt
∂Tt

+ λ1t
∂Gc

t

∂Tt
+
∞∑
m=0

[βmλ1t+m
∂δ

∂SLRt+m

Kt+m]
∂SLRt+m

∂Tt
= ξt (46)

Next, the first order condition with respect to mitigation µt for t > 0 implies that, at the
optimum, marginal abatement costs are equated to the present value of future marginal damages:

Θ′t(µtEt) =
∞∑
j=0

ξt+j
λ1t

βj
∂Tt+j
∂EM

t

(47)

Combining (46) and (47) yields an expression for the optimal carbon price τ ∗Et in equilbrium as
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per (15). In order to derive the expression of Result 1 in the paper, one needs to substitute out for
the public marginal utility of income λ1t and for the Lagrange multiplier on the implementability
constraint, φ.With regards to the former, the planner’s optimality condition with respect to the
aggregate private capital stock [Kt+1] for t > 0 implies that:

λ1t
βλ1t+1

= [FKt+1 + (1− δ(.))] (48)

Substituting the equilibrium condition for capital returns (10) into (48) links to the rate of return
term in Mj (24). With regards ot the latter, taking the first order condition with respect to [Ct]
for t > 0 reveals that:

φ =
λ1t − Uct

[UcctCt + Uct + UlctLt − UcctGT
t (Tt)]

(49)

Substituting (49) into (46), multiplying by Uct
Uct
, invoking the definition of the MCFt = λ1t

Uct
,

and rearranging yields the expression for the optimal carbon price τ ∗Et in Result 1.

7.2.2 Result 2

Production adaptation In order to demonstrate that the optimal provision of general pro-
duction adaptation Λy

t is undistorted, we note that combining the first order conditions with
respect to [Λy

t ] and [λyt ] for t > 0 yields optimality condition (50):

(−F̃1TtD(Tt))︸ ︷︷ ︸
MRTF1t

Ct,Λ
y
t

=
1

f yλt︸︷︷︸
MRT

f
y
t
Ct,Λ

y
t

(50)

Here, F̃1Tt denotes the marginal output losses due to a change in temperature at time t, and
D(Tt) is the damage function from (8). The left-hand side of (50) thus measures the increase in
the final consumption good available due to a marginal increase in adaptive capacity in the final
goods sector (Λy

t ). Conversely, the right-hand side represents the marginal rate of transformation
between the consumption good Ct and adaptive capacity through adaptation expenditures λ

y
t .

While condition (50) will be evaluated at different allocations depending on the tax system, it
demonstrates that there is no wedge distorting adaptation provision at the optimum, as indicated
in Result 2.

Sea level rise protection With regards to public sea level rise adaptation, combining the
planner’s first order conditions with respect to adaptive capacity [Λslr

t ], capital [AKt+1], and
investment [λslrt ] yields an Euler equation governing optimal public investment in coastal protec-
tion:

λ1t
βλ1t+1

=
∂ΛSLR

t+1

∂AKt+1

∂δ

∂Λslr
t+1

Kt+1 + (1− δslr) (51)

The right-hand side captures the intertemporal marginal rate of transformation between the
consumption-investment good today and in the future through investments in sea level rise
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adaptation capital. The left-hand side denotes the social planner’s intertemporal marginal rate of
substitution. Comparison of (23) to (48) demonstrates that, at the optimum, the planner equates
the marginal rates of transformation between sea level rise and general capital, indicating that
there is again no distortion in the provision of this asset even if it is funded through distortionary
taxation.

7.2.3 Result 3

Finally, for Result 3, combining the planner’s first order conditions with respect to [Λu
t ] and [λut ]

for t > 0 yields the optimality condition for public provision of utiliy adaptation:

−UTtTt
λ1t

=
1

fuλt
(52)

(−UTtTt)/Uct
MCFt

=
1

fuλt

Multiplying the left-hand side of (52) by Uct/Uct and invoking the definition of the MCFt in
(21) then yields the following optimality condition governing public utility adaptation expendi-
tures for t > 0:

(−UTtTt)
Uct︸ ︷︷ ︸

MRSCt,Λut

1

MCFt︸ ︷︷ ︸
wedge

=
1

fuλt︸︷︷︸
MRT

fut
Ct,Λ

u
t

(53)

The first term on the left-hand side of (53) is the household’s marginal rate of substitution (MRS)
between consumption and adaptive capacity to reduce climate change utility impacts. The right-
hand side equals the marginal cost of increasing this adaptive capacity, or the marginal rate of
transformation (MRT) between consumption and adaptive capacity (through λut ). Importantly,
there is a wedge between the MRS and MRT at the optimum, demonstrating that the provision
of the public utility adaptation good is distorted as stated in Result 3.

7.3 Further Calibration Details

7.3.1 Clean Energy Costs

The production of clean energy, in addition to (), has costs Θt(µtEt) which approximate the
RICE model’s (Nordhaus, 2011) estimates of a U.S. abatement cost curve from per-percentage
into a per-ton cost measure through a logistic approximation:

Θt(µtEt) =
aP backstop

t

1 + at exp(b0t − b1t(µtEt))b2
· (µtEt)bx (54)

where P backstop
t is the backstop technology price in year t, taken directly from RICE (Nordhaus,

2011). We note that P backstop
t = 0 for t > 2255. The remaining parameters minimize the sum of

squared errors of abatement costs implied by (54) versus RICE (see Barrage, 2020a for details),
namely:
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a 0.0662
at = 49.8896+0.8551 log (t)
b0t = 14.3338−6.4698 log (t)
b1t = 15.1937−6.6864 log (t)
b2 9.4680e− 04
bx 2.6931

7.4 Further Numerical Results

Table A1 presents analogous resluts to Table 7 but assuming rest-of-the-world emissions are fixed
at business-as-usual levels.

Table A1: Main Results with Exogenous ROW Emissions
Labor Capital Carbon ∆Welfare

Scenario Tax Tax MCF Tax EV ∆C2015
Income Carbon ($/mtC) ($2015 bil.)

& Energy Avg. 2025-2215 2015-25
First-Best No 0 0

First-Best Opt. 0 0 1.00 11.3 129

Opt. No 40.4 5.7 1.10 0

Opt. Opt. 40.3 4.3 1.10 8.7 170

BAU τ l, No 35.1 35.9 1.55 0

vary τ k Opt. 35.1 34.8 1.52 7.3 497

BAU τ k, No 39.9 29.0 1.10 0

vary τ l Opt. 39.6 29.0 1.10 8.7 144

Rest-of-world emissions fixed at BAU levels; RICE Production Damages
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